久久建筑網(www.thesevenwonder.com)致力打造一個專業(yè)的建筑學習分享平臺! 用戶登錄 免費注冊 | 投訴舉報 幫助 | 會員中心 | 上傳資料
您現在的位置: > 建筑 > 建筑圖紙 > 教育建筑 > >>

3264平米的三層框架教學樓畢業(yè)設計(帶計算和圖紙).rar

資料評價:
☆☆☆☆☆
生成時間:
2021-08-06
下載權限:
免費會員
文件大小:
8.28 MB
文件類型:
.rar
瀏覽次數:
2
建筑論壇:
上傳會員:
sadsadsads
所屬欄目:
教育建筑
下載地址:
資料是由會員“sadsadsads”上傳到本平臺,如有不妥請聯(lián)系客服。違規(guī)侵權投訴
3264平米,三層框架教學樓畢業(yè)設計(計算、建筑、結構圖)
 
河 海 大 學
畢業(yè)設計說明
 
 
作   者:   李良   
學  號:AHG2009140
專   業(yè): 土木工程               
題   目: 溧陽職業(yè)學校一號教學樓設計
             
 
指導者:                           
 
      
 
評閱者:                            
 
 
 
     2011 年 5 月   南 京

目錄
2011   年  5月   南 京... 1
前   言... 1
內容摘要... 2
第一章   工程概況... 4
1.1 工程總體概況..... 4
1.2 設計資料..... 4
1.3 承重方案選擇..... 4
1.4 結構布置..... 5
第二章   確定計算簡圖... 6
2.1 框架梁截面尺寸..... 6
2.2 框架柱截面尺寸..... 6
2.3 框架結構計算簡圖..... 6
第三章       荷載代表值... 7
3.1荷載統(tǒng)計..... 7
3.2 荷載作用計算..... 9
3.3 地震作用下荷載計算..... 12
第四章   框架內力計算... 17
4.1 恒載作用下的框架內力..... 17
4.2 活載作用下的框架內力..... 24
4.3地震作用下橫向框架的內力計算..... 28
第五章   框架內力組合... 32
5.1 彎矩調幅..... 32
5.2橫向框架梁內力組合.... 33
5.3橫向框架柱內力組合.... 36
第六章   框架梁、柱截面設計... 40
6.1框架梁截面設計..... 40
6.2 框架柱截面設計..... 46
第七章  樓梯結構設計... 48
7.1 樓梯板計算..... 48
7.2 平臺板計算..... 49
7.3 平臺梁計算..... 50
第八章  現澆樓蓋設計... 53
8.1現澆樓蓋設計..... 54
第九章  基礎設計... 56
9.1 荷載計算..... 57
9.2 確定基礎底面積..... 58
9.3 基礎結構設計(混凝土采用C20)..... 59
第十章  科技資料翻譯... 64
參考資料... 83
 
 

前   言
畢業(yè)設計是本科教育培養(yǎng)目標實現的重要階段,是畢業(yè)前的綜合學習階段,是深化、拓寬、綜合教和學的重要過程,是對期間所學專業(yè)理論知識的全面總結。
本組畢業(yè)設計題目為《溧陽職業(yè)學校一號教學樓框架結構設計》。在畢業(yè)設計前期,我溫習了《結構力學》、《鋼筋混凝土》、《建筑結構抗震設計》等知識,并借閱了《抗震規(guī)范》、《混凝土規(guī)范》、《荷載規(guī)范》等規(guī)范。在畢業(yè)設計中期,我通過所學的基本理論、專業(yè)知識和基本技能進行建筑、結構設計。在設計期間,本組在校成員齊心協(xié)力、分工合作,發(fā)揮了大家的團隊精神。在設計后期,主要進行設計手稿的電腦輸入,并得到老師的審批和指正,使我圓滿的完成了任務,在此表示衷心的感謝。
畢業(yè)設計的三個月里,在指導老師的幫助下,經過資料查閱、設計計算、論文撰寫以及外文的翻譯,加深了對新規(guī)范、規(guī)程、手冊等相關內容的理解。鞏固了專業(yè)知識、提高了綜合分析、解決問題的能力。在進行內力組合的計算時,進一步了解了Excel。在繪圖時熟練掌握了AutoCAD,以上所有這些從不同方面達到了畢業(yè)設計的目的與要求。
框架結構設計的計算工作量很大,在計算過程中以手算為主,輔以一些計算軟件的校正。由于自己水平有限,難免有不妥和疏忽之處,敬請各位老師批評指正。
                                           2011.5.8
內容摘要
本設計主要進行了結構方案中橫向框架3軸框架的抗震設計。在確定框架布局之后,先進行了層間荷載代表值的計算,接著利用頂點位移法求出自震周期,進而按底部剪力法計算水平地震荷載作用下大小,進而求出在水平荷載作用下的結構內力(彎矩、剪力、軸力)。接著計算豎向荷載(恒載及活荷載)作用下的結構內力,。 是找出最不利的一組或幾組內力組合。 選取最安全的結果計算配筋并繪圖。此外還進行了結構方案中的室內樓梯的設計。完成了平臺板,梯段板,平臺梁等構件的內力和配筋計算及施工圖繪制。
關鍵詞: 框架    結構設計    抗震設計            
Abstract
   The purpose of the design is to do the anti-seismic design in the longitudinal frames of axis 3. When the directions of the frames is determined, firstly the weight of each floor is calculated .Then the vibrate cycle is calculated by utilizing the peak-displacement method, then making the amount of the horizontal seismic force can be got by way of the bottom-shear force method. The seismic force can be assigned according to the shearing stiffness of the frames of the different axis. Then the internal force (bending moment, shearing force and axial force ) in the structure under the horizontal loads can be easily calculated. After the determination of the internal force under the dead and live loads, the combination of internal force can be made by using the Excel software, whose purpose is to find one or several sets of the most adverse internal force of the wall limbs and the coterminous girders, which will be the basis of protracting the reinforcing drawings of the components. The design of the stairs is also be approached by calculating the internal force and reinforcing such components as landing slab, step board and landing girder whose shop drawings are completed in the end.
Keywords :  frames,  structural design,  anti-seismic design
 
 
 
 
 
 
 
 
 
 
 
 
第一章   工程概況
1.1 工程總體概況
江蘇溧陽職業(yè)學校一號樓為三層鋼筋混凝土框架結構體系,建筑面積約3000 m2 ,層高3.6 m,室內外高差為0.45m,屋面為上人屋面,采用有組織排水。樓蓋及屋蓋用現澆鋼筋混凝土板。建筑設計使用年限50年。
1.2 設計資料
(1)建筑構造
屋面做法:SBS改性瀝青防水卷材屋面,屋面保溫材料選用聚苯板
樓面作法:水磨石樓面,
內外墻作法:內外墻均選用粉煤灰輕渣空心砌塊(390mm×190mm×190mm)
(2)地質資料
層次 土類 平均厚度
(m)
承載力特征值fak(kPa) 重度
(KN/m3)
土層剪切波速(m/s)
1 雜填土 0.8 90 16.5  
2 素填土 0.9 100 16.0  
3 粉塵沙土 6.2 160 19.2 200
4 粉土 5.7 140 19.0 180
5 粉質粘土 7.9 225 19.4 350
注:1、場地土覆蓋厚度(地面至剪切波速大于500m/s的土層距離)為66m。
    2、常年地下水位在地表下2.0m。
(3)基本雪壓:0.5kN/m2
(4)地震資料:設防烈度為7度,設計基本地震加速度為0.1g,設計地震為第一組。
(5)建筑等級:結構安全等級二級,耐火等級Ⅱ級。
(6)材料:混凝土強度等級上部結構采用C25,基礎采用C20;梁柱及基礎縱向受力鋼筋采用HRB335級鋼筋,其余鋼筋均采用HPB235級鋼筋,鋼筋最大直徑不超過25mm。
(7)教學樓樓面活載,查《建筑結構荷載規(guī)范》(GB 50009–2001),確定樓面活載標準值為2 kN/m2;上人屋面活荷載標準值 2.0 kN/m2
1.3 承重方案選擇
豎向荷載的傳力途徑:樓板的均布活載和恒載經次梁間接或直接傳至主梁,再由主梁傳至框架柱,最后傳至地基。根據以上樓蓋的平面布置及豎向荷載的傳力途徑,本教學樓框架的承重方案為橫向框架承重方案。

1.4 結構布置
 

 

第二章   確定計算簡圖
2.1 框架梁截面尺寸
1.主梁高 h=(1/12~1/8)l , b = (1/2~1/3)h
橫向:AB、CD跨:l=7500mm。h=625~937.5mm,取h=700mm ,b =300mm。
BC跨:    l=3000mm。h=250~375mm,取h=400mm ,b =300mm。
縱向:l=8100mm。h=675~1012.5mm,取h=700mm ,b =300mm。
(3)次梁: h=(1/18~1/15)l
          h=500 mm  b=250 mm
2.2 框架柱截面尺寸
本工程為現澆鋼筋混凝土結構,7度設防,高度<30m,抗震等級為二級,取底層柱估算柱尺寸,根據經驗荷載為14kN/m2:
中柱負荷面積(3/2+7.5/2)×8.1=42.525m2。
豎向荷載產生的軸力估計值:NV=14×42.525×3=1786.05 kN。
軸力增大系數,中柱1.1,邊柱1.2,N=1.1×1786.05=1964.66kN。
Ac≥N/uNfc=1964.66×103/(0.8×11.9)=206371.32mm2。
為安全起見,取柱截面尺寸為500mm×500mm。
2.3 框架結構計算簡圖

 
 
第三章  荷載代表值
3.1荷載統(tǒng)計
一、屋面(上人)(蘇J01-2005  21+A/7)
(1)恒荷載
25厚1:2.5水泥砂漿保護層,表面抹光壓平:    0.025×25=0.63kN/m2
隔離層:(SBS改性瀝青柔性卷):                0.4kN/m2
高分子卷材(一層):                            0.05 kN/m2
20厚1:3水泥砂漿找平層:                    0.02×20=0.4kN/m2
120厚鋼筋混凝土屋面板:                    0.12×25=3.0kN/m2
20厚天棚石灰砂漿抹灰:                     0.02×17=0.34kN/m2   
合計:                                      5.93kN/m2
(2)活荷載和雪荷載
上人屋面均布活荷載:                       2.0kN/m2
(基本雪壓0.5KN/m2)                                                  
合計:                                     2.0 KN/m2
二、樓面(蘇J01-2005  5/3)
(1)恒荷載
1.15厚1:2白水泥白石子(或摻有色石子)磨光打蠟0.27 KN/m2
2.刷素水泥漿結合層一道
20厚1:3水泥砂漿找平層                     0.02×20=0.4kN/m2
120厚現澆鋼筋混凝土板                      25×0.12=3.0kN/m2
20厚天棚石灰砂漿抹灰:                     0.02×17=0.34kN/m2             
樓面恒載:                                          4.01kN/m2
(2)活荷載
樓面均布活荷載:                            2.0kN/m2                                    
走廊:                                      2.5kN/m2
三、內墻面(蘇J01-2005  9/5)
刷乳膠漆
5厚1:0.3:3水泥石灰膏砂漿粉面               0.005×12=0.06kN/m2
12厚1:1:6水泥石灰膏砂漿打抵                0.012×17=0.204kN/m2
刷界面處理劑一道
粉煤灰輕渣空心砌塊                  7×0.19=1.33kN/m2                                        
合計:                                     1.594kN/m2
四、外墻面(蘇J01-2005  22/6)
外墻涂料飾面
聚合物砂漿
保溫材料
3厚專用膠粘劑
20厚1:3水泥砂漿找平層                  0.020×20=0.4kN/m2            
12厚1:3水泥砂漿打底掃毛                0.012×20=0.24kN/m2
刷界面劑處理一道                                
粉煤灰輕渣空心砌塊                         7×0.19=1.33kN/m2
合計                                                1.97kN/m2
表3-1  2-3層墻重
位置 墻重kN/m2 梁高m 鋼框玻璃窗kN/m2 窗高m 層高m 均布墻重kN/m 跨度m 自重kN 總重kN
外縱墻 1.97 0.4 0.45 2 3.6 3.264 54.44 177.69 641.58
內縱墻 1.594 0.4     3.6 5.101 54.44 277.7
外橫墻 1.97 0.7     3.6 5.713 18 102.83
內橫墻 1.594 0.7     3.6 4.631 18 83.36
 
表3-2   底層墻重
位置 墻重kN/m2 梁高m 鋼框玻璃窗kN/m2 窗高m 層高m 均布墻重kN/m 跨度m 自重kN 總重kN
外縱墻 1.97 0.4 0.45 2.0 4.55 5.136 54.44 279.6 886.72
內縱墻 1.594 0.4     4.55 6.615 54.44 360.12
外橫墻 1.97 0.7     4.55 7.585 18 136.53
內橫墻 1.594 0.7     4.55 6.137 18 110.47
五、主梁荷載
    縱軸梁: 0.7×0.3×25=5.25kN/m
    橫軸梁: AB,CD跨自重0.7 ×0.3×25=5.25kN/m
             粉刷2×(0.7-0.12)×0.02×17=0.39kN/m
                                    5.64kN/m
BC跨自重   0.3 ×0.4×25=3kN/m
             粉刷   2×(0.4-0.12)×0.02×17=0.19kN/m
                                     3.19kN/m
次梁荷載
              自重0.5 ×0.25×25=3.125kN/m
              粉刷2×(0.5-0.12)×0.02×17=0.129kN/m
                                    3.254kN/m
六、柱荷載
2-3層     0.5×0.5×3.6×25=22.5kN
底層      0.5×0.5×4.55×25=28.44kN
七、梁自重
縱梁自重    5.25×54.44×4=1143.24kN
橫向AB,CD   5.25×7.5×2×7=551.25 kN
     BC      3×3×7=63 kN
八、柱自重
  2-3層每層柱重 22.5×32=720kN
    底層          28.44×32=910.1kN
九、活荷載統(tǒng)計
     上人屋面活荷載標準值                          2.0 kN/m2
     樓面,衛(wèi)生間活荷載標準值                      2.0 kN/m2
     走廊,樓梯                                    2.5 kN/m2
     屋面雪荷載                     Sk=us0=1.0×0.5=0.5 kN/m2
3.2 荷載作用計算
一、屋面荷載
    1.屋面恒荷載:      5.93kN/m2
      梁自重 AB,CD跨: 5.64kN/m
               BC跨: 3.19kN/m
作用在頂層框架梁上的線荷載標準值為;
梁自重 g5AB1=g5CD1=5.64kN/m        g5BC1=3.19kN/m
板傳來的荷載g5AB2= g5CD2=5.93×8.1=48.0kN/m
            g5BC2=3.19×3=9.57kN/m
2.活載
作用在頂層框架梁上的線活載標準值為;
            g5AB= g5CD=2×8.1=16.2kN/m
            g5BC=2×3=6kN/m
二、樓面荷載
    1.樓面荷載標準值:       4.01kN/m2
      邊跨(AB,CD)框架自重:5.64kN/m
      中跨(BC)             3.19kN/m
     梁自重       gAB1= gCD1=5.6kN/m  gBC1=3.19kN/m
     板傳來荷載   gAB2= gCD2=4.01×8.1=32.48kN/m
                  gBC2=4.01×3=12.03kN/m
    2.活載        gAB= gCD=2×8.1=16.2kN/m
                  gBC=2.5×3=7.5kN/m
三、屋面框架節(jié)點集中荷載標準值;
    1.恒載
  邊跨連系梁自重          0.7×0.3×8.1×25=42.53kN
      粉刷          2×(0.7-0.12)×0.02×8.1×17=3.19kN
      連系梁傳來屋面自重 0.5×8.1×0.5×8.1×5.93=97.27kN
      頂層邊節(jié)點集中荷載                G5A=G5D=142.99kN
     
      中柱連系梁自重              0.7×0.3×8.1×25=42.53kN
      粉刷                2×(0.7-0.1)×0.02×8.1×17=3.19kN
      連系梁傳來屋面板自重    0.5×8.1×0.5×8.1×5.93=97.27kN
                     0.5×(8.1+8.1-3)×3/2×5.93=58.71kN
      頂層中節(jié)點荷載                       G5B=G5C=201.67kN
    2.活載
             Q5A=Q5D=0.5×8.1×0.5×8.1×2=32.81 kN
Q5B=Q5C=32.81+0.5×(8.1+8.1-3)×3/2×2=52.61kN
四、樓面框架節(jié)點集中荷載標準值
1.恒載
  邊梁連系梁自重    0.7×0.3×8.1×25=42.53kN
      粉刷               2×(0.7-0.1)×0.02×8.1×17=3.19kN
      連系梁傳來樓面荷載 0.5×8.1×0.5×8.1×4.01=65.77kN
      縱向梁上填充墻  8.1×3.264=26.44kN
      柱自重                      22.5kN          28.44kN
      中間層邊節(jié)點集中荷載       160.43kN      底層166.37kN
 
  中柱連系梁自重             0.7×0.3×8.1×25=42.53kN
      粉刷                  2×(0.7-0.1)×0.02×8.1×17=3.19kN
連系梁傳來樓面自重         0.5×8.1×0.5×8.1×4.01=65.77kN
                        0.5×(8.1+8.1-3)×3/2×4.01=48.72kN
內縱向梁上填充墻                    8.1×5.101=41.32kN
柱自重                     22.5kN          28.44kN
     中間層中節(jié)點集中荷載       224.03kN       底層229.97kN
   2.活載
              QA=QD=0.5×8.1×0.5×8.1×2=32.81kN
              Q5B=Q5C=32.81+0.5×(8.1+8.1-3)×3/2×2.5=57.56kN

圖3-1 恒載作用下計算簡圖
 
 

圖3-2 活載作用下計算簡圖
 3.3 地震作用下荷載計算
1.建筑物總重力荷載代表值Gi的計算
a.集中于屋蓋處的質點重力荷載代表值G 3
50%雪載:                0.5×0.5×18×54.44 = 244.8kN
屋面恒載:                   5.93×18×54.44 = 5810.93kN
橫梁:                (5.64×7.5×2+3.19×3)×7= 659.19kN
縱梁:                          5.25×54.44×4=1143.24kN
柱重:                             0.5×32×22.5= 360kN
墻自身重(各層一半)              641.58/2=320.79kN
G 3=8538.91kN
b.集中于樓面處的質點重力荷載代表值G 2
50%樓面活荷載: 0.5×(2×7.5×54.44×2+2.5×3×54.44) = 1020.75kN
樓面恒載:                        4.01×18×54.44= 3929.48 kN
梁自重:                                         1802.43kN
墻自重(上下各半層):                             641.58kN
柱重(上下各半層):                                720kN
G 2-4=8114.24kN
c.集中于底層樓面處的質點重力荷載代表值G 1
50%樓面活荷載: 0.5×(2×7.5×54.44×2+2.5×3×54.44) = 1020.75kN
樓面恒載:                        4.01×18×54.44= 3929.48kN
梁自重:                                          1802.43kN
墻自重(上下各半層):              641.58/2+886.72 /2=764.15kN
柱重(上下各半層):                 720/2+910.1/2=815.05kN
G 1=8331.86kN
結構等效總重力荷載:  

圖3-4 各質點的重力荷載代表值
2.地震作用計算:
(1)框架柱的抗側移剛度
在計算梁、柱線剛度時,應考慮樓蓋對框架梁的影響,在現澆樓蓋中,中框架梁的抗彎慣性矩取 I = 2I0;邊框架梁取 I = 1.5I0;在裝配整體式樓蓋中,中框架梁的抗彎慣性矩取I = 1.5I0;邊框架梁取I = 1.2I0,I0為框架梁按矩形截面計算的截面慣性矩。
表3-4   橫梁、柱線剛度
桿件 截面尺寸 Ec
(kN/mm2)
I0
(mm4)
I
(mm4)
L
(mm)

(kN﹒mm)
相對剛度
B
(mm)
H
(mm)
邊框架梁 300 700 30 8.58×109 12.87×109 7500 5.15×107 1
邊框架梁 300 400 30 1.6×109 2.4×109 3000 2.4×107 0.466
中框架梁 300 700 30 8.58×109 17.16×109 7500 6.86×107 1.332
中框架梁 300 400 30 1.6×109 3.2×109 3000 3.2×107 0.621
底層框架柱 500 500 30 5.21×109 5.21×109 4550 3.44×107 0.668
中層框架柱 500 500 30 5.21×109 5.21×109 3600 4.34×107 0.843
 
每層框架柱總的抗側移剛度見表3-5:
表3-5  框架柱橫向側移剛度D值
 項目
 
    根數 
柱類型及截面
二至三層 邊框架邊柱(500×500) 1.19 0.37 14.87 4
邊框架中柱(500×500) 1.74 0.47 18.89 4
中框架邊柱(500×500) 1.58 0.44 17.68 10
中框架中柱(500×500) 2.32 0.54 21.7 10
底層 邊框架邊柱(500×500) 1.5 0.57 11.37 4
邊框架中柱(500×500) 2.19 0.64 12.76 4
中框架邊柱(500×500) 1.99 0.62 12.36 10
中框架中柱(500×500) 2.92 0.7 13.96 10
ic:梁的線剛度,iz:柱的線剛度。
底層:    ∑D = 11.37×4+12.76×4+12.36×10+13.96×10=359.72
kN/mm
二~三層:∑D = 4×(14.87+18.89)+(17.68+21.7)×10= 528.84kN/mm
(2)框架自振周期的計算
表3-6  框架頂點假想水平位移Δ計算表
Gi(kN) ∑Gi(kN) ∑D(kN/mm) δ=∑Gi/∑D 總位移Δ(mm)
3 8538.91 8538.91 528.84 16.15 117.1
2 8114.24 16653.15 528.84 31.49 100.96
1 8331.86 24985.01 359.72 69.46 69.46
:(考慮結構非承重磚墻影響的折減系數,對于框架取0.6)
則自振周期為: 
(3)地震作用計算
根據本工程設防烈度7、Ⅱ類場地土,設計地震分組為第一組,查《抗震規(guī)范》特征周期Tg = 0.35 sec,αmax = 0.08
由于Tg = T1

結構等效總重力荷載:  
因為T1<1.4Tg
所以無需在此結構頂部附加集中水平地震作用。

各樓層的地震作用和地震剪力標準值由表3-7計算列出。
表3-7   樓層地震作用和地震剪力標準值計算表
Hi(m) Gi(kN) GiHi Fi=GiHiFEk/(∑GkHk) 樓層剪力Vi(kN)
3 11.75 8538.91 100332.19 834.07 834.07
2 8.15 8114.24 66131.06 549.76 1383.83
1 4.55 8331.86 37909.96 315.15 1698.98
(4)多遇水平地震作用下位移驗算
水平地震作用下框架結構的層間位移(△u)i和頂點位移u i分別按下列公式計算:
(△u)i = Vi/∑D ij                                                  (3-1)
u i=∑(△u)k                                 (3-2)
各層的層間彈性位移角θe=(△u)i/hi,根據《建筑抗震設計規(guī)范》,考慮磚填充墻抗側力作用的框架,層間彈性位移角限值[θe]<1/550。
計算過程如表3-8所示:
表3-8 橫向水平地震作用下的位移驗算
樓層 hi (mm) Vi (kN) ∑Di
(kN/mm)
(Δue)
(mm)
ui
(mm)
  [ ]
3600 834.07 359.72 2.32 9.38 0.00064 1/550=
0.00182
3600 1383.83 359.72 3.85 7.06 0.00107
4550 1698.98 528.84 3.21 3.21 0.00071
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
第四章   框架內力計算
4.1 恒載作用下的框架內力
1.彎矩分配系數
 計算彎矩分配系數

頂層:
節(jié)點A3      

   節(jié)點B3      
            
 
 
 
節(jié)點A2    
 

 
節(jié)點B2   
       
 

            
 

       
底層:
節(jié)點A1    
                                         
 
             
 
                                          
   節(jié)點B1     
                
                                               
 
               
                                               
 

               
 
2.均布等效荷載

頂層邊跨
頂層中跨
中間層邊跨
中間層中跨
     
表4-1均布等效荷載(單位:kN/m)
位置 AB梁 BC梁 CD梁
3 23.38 9.08 23.38
2 23.38 9.08 23.38
1 23.38 9.08 23.38
3.固端彎矩
頂層邊跨         M5AB=1/12×23.68×7.52=102.3 kN.m
頂層中跨         M5BC=1/12×9.08×32=6.8 kN.m
中間層邊跨       MAB=1/12×23.38×7.52=101 kN.m
中間層中跨       MBC=1/12×9.08×32=5.52 kN.m
4.縱梁引起柱端附加彎矩
邊框架縱梁偏向外側,中框架縱梁偏向內側
頂層外縱梁    MA5=-MD5=45.3×0.125=5.66kN.m   (逆時針為正)
頂層中縱梁     MB5=-MC5=-58.01×0.125=-7.25kN.m
樓層外縱梁     MA1=-MD1=48.83×0.125=6.10kN.m
樓層中縱梁     MB1=-MC1=-63.14×0.125=-7.89kN.m
5.節(jié)點不平衡彎矩
橫向框架的節(jié)點不平衡彎矩為通過該節(jié)點的各桿件(不包括縱向框架梁)在節(jié)點處的固端彎矩與通過該節(jié)點的縱梁引起柱端橫向附加彎矩之和,根據平衡原則,節(jié)點彎矩的正方向與桿端彎矩方向相反,一律以逆時針方向為正。
頂層:MA5=-MD5=-102.3+5.66=-96.64kN.m
      MB5=-MC5=102.3-6.8-7.25=88.25kN.m
樓層:MA=-MD=-101+6.10=-94.9kN.m
      MB=-MC=101-5.52-7.89=87.59kN.m
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6.恒荷載作用下彎矩二次分配
 
7.恒荷載作用下梁端剪力和柱軸力計算
表4-2 AB跨梁端剪力(kN)
g(kN/m)
(自重作用)
q(kN/m)
(板傳來作用)
gl/2 u=(l-a)
*q/2
MAB
(kN.m)
MBA
(kN.m)
∑Mik/l V1/A=gl/2
+u-∑Mik/l
VB=-(gl/2
+u+∑Mik/l)
3 5.64 48.03 32.76 42.32 -87.28 92.68 0.75 74.33 -75.83
2 5.64 32.48 32.76 42.32 -87.78 92.94 0.72 74.36 -75.8
1 5.64 32.48 32.76 42.32 -79.6 88.2 1.19 73.89 -76.27
 
注:l=7.5m a=4.05m
表4-3 BC跨梁端剪力(kN)
g(kN/m)
(自重作用)
q(kN/m)
(板傳來荷載作用)
l(m) gl/2 l*q/4 VB=gl/2+l*q/4 VC=-(gl/2+l*q/4)
3 3.19 9.57 3 3.65 6.89 10.54 -10.54
2 3.19 12.03 3 3.65 6.89 10.54 -10.54
1 3.19 12.03 3 3.65 6.89 10.54 -10.54
 
 
表4-4 AB跨跨中彎矩(kN.m)
g(kN/m)
(自重作用)
q(kN/m)
(板傳來作用)
gl/2 u=(l-a)
*q/2
MAB
(kN.m)
∑Mik/l V1/A=gl/2
+u-∑Mik/l
M=gl/2*l/4+u*1.05
-MAB- V1/A*l/2
3 5.64 48.03 32.76 42.32 -87.28 0.75 74.33 -76.9
2 5.64 32.48 32.76 42.32 -87.78 0.72 74.36 -76.51
1 5.64 32.48 32.76 42.32 -79.6 1.19 73.89 -83
 
注:l=7.5m a=4.05m
表4-5 BC跨跨中彎矩(kN.m)
g(kN/m)
(自重作用)
q(kN/m)
(板傳來荷載作用)
l(m) gl/2 l*q/4 MBC
(kN.m)
VB=gl/2
+l*q/4
M=gl/2*l/4+ql/4*l/6
-MBc- VB*l/2
3 3.19 9.57 3 3.65 6.89 -13.82 10.54 5.16
2 3.19 12.03 3 3.65 6.89 -13.65 10.54 4.99
1 3.19 12.03 3 3.65 6.89 -17.22 10.54 8.56
 
 
表4-6 柱軸力(kN)
邊柱A軸、D軸 中柱B軸、C軸
橫梁端部壓力 縱梁端部壓力 柱重 柱軸力 橫梁端部壓力 縱梁端部壓力 柱重 柱軸力
3 柱頂 66.03 48.83 22.5 369.91 90.72+10.54=101.26 63.14 22.5 503.87
柱底 392.41 526.37
2 柱頂 66.03 48.83 22.5 507.27 90.72+10.54=101.26 63.14 22.5 690.77
柱底 529.77 713.27
1 柱頂 73.84 48.83 28.44 652.44 98.53+10.54=109.07 63.14 28.44 885.45
柱底 682.75 915.79
 
 
8.內力圖
圖4.3 恒載作用下橫向框架彎矩圖(kN·m)
                   圖4.4 恒載作用下橫向框架剪力圖(kN)
              圖4.5 恒載作用下橫向框架軸力圖(kN)
 
 
 
 
4.2 活載作用下的框架內力
1.均布等效荷載

頂層邊跨
頂層中跨
中間層邊跨
中間層中跨
      表4-7均布等效荷載(單位:kN/m)
位置 AB梁 BC梁 CD梁
3 7.52 4.25 7.52
2 7.52 4.25 7.52
1 7.52 4.25 7.52
2.固端彎矩
頂層邊跨         M5AB=1/12×7.52×7.52=32.49 kN.m
頂層中跨         M5BC=1/12×4.25×32=2.05 kN.m
中間層邊跨       MAB=1/12×7.52×7.52=32.49 kN.m
中間層中跨       MBC=1/12×4.25×32=2.58 kN.m
3.縱梁引起柱端附加彎矩
邊框架縱梁偏向外側,中框架縱梁偏向內側
頂層外縱梁    MA5=-MD5=32.81×0.125=1.27kN.m   (逆時針為正)
頂層中縱梁    MB5=-MC5=-52.61×0.125=-2.33kN.m
樓層外縱梁    MA1=-MD1=32.81×0.125=1.27kN.m
樓層中縱梁    MB1=-MC1=-(2×0.5×8.1×0.5×8.1+2.5×(8.1-2.7+8.1)×3×0.5×0.5)×0.125=-2.78kN.m
4.節(jié)點不平衡彎矩
橫向框架的節(jié)點不平衡彎矩為通過該節(jié)點的各桿件(不包括縱向框架梁)在節(jié)點處的固端彎矩與通過該節(jié)點的縱梁引起柱端橫向附加彎矩之和,根據平衡原則,節(jié)點彎矩的正方向與桿端彎矩方向相反,一律以逆時針方向為正。
頂層:MA5=-MD5=-32.49+1.27=-31.22kN.m
      MB5=-MC5=32.49-2.33-2.05=28.11kN.m
樓層:MA=-MD=-32.49+1.27=-31.22kN.m
      MB=-MC=32.49-2.58-2.78=27.13kN.m
1. 活荷載作用下彎矩二次分配
                 圖4.6 活載作用下橫向框架彎矩的二次分配(KN·m)
6.恒荷載作用下梁端剪力和柱軸力計算
表4-8 滿跨活載作用下AB跨梁端剪力
q(kN/m) u=(l-a)*q/2 MAB(kN.m) MBA(kN.m) ∑Mik/l V1/A=u-∑Mik/l VB=-(u+∑Mik/l)
3 16.2 22.28 -27.82 30.14 0.32 21.96 -22.6
2 16.2 22.28 -27.99 30.21 0.31 21.97 -22.59
1 16.2 22.28 -25.29 28.78 0.48 21.8 -22.76
 
注:l=7.5m a=4.05m
表4-9 滿跨活載作用下BC跨梁端剪力
q(kN/m) l(m) ql/4(kN) VB= ql/4 (kN) VC=-ql/4 (kN)
3 6 3 4.59 4.59 -4.59
2 7.5 3 4.59 4.59 -4.59
1 7.5 3 4.59 4.59 -4.59
 
 
表4-10 滿跨活載作用下AB跨跨中彎矩
q(kN/m)
(板傳來荷載作用)
u=(l-a)*q/2 MAB
(kN.m)
∑Mik/l V1/A=u-∑Mik/l M=u*1.05-MAB- V1/A*l/2
3 16.2 22.28 -27.82 0.32 21.96 -27.82
2 16.2 22.28 -27.99 0.31 21.97 -27.71
1 16.2 22.28 -25.29 0.48 21.8 -29.8
 
注:l=7.5m a=4.05m
表4-11 滿跨活載作用下BC跨跨中彎矩
q(kN/m) l(m) ql/4(kN) MBC
(kN.m)
VB= ql/4 (kN) M= ql/4*l/6
-MBc- VB*l/2
3 6 3 4.59 -5.21 4.59 1.08
2 7.5 3 4.59 -5.16 4.59 1.03
1 7.5 3 4.59 -6.27 4.59 2.14
 
 
表4-12 滿跨活載作用下柱軸力 (kN)
邊柱(A軸) 中柱(B軸)
橫  梁
端部剪力
縱  梁
端部剪力
柱軸力 橫    梁
端部剪力
縱   梁
端部剪力
柱軸力
3 21.96 10.13 95.96 22.6+4.59=27.19 22.22 143.95
2 21.97 10.13 128.06 22.59+4.59=27.18 22.22 193.35
1 21.8 10.13 159.99 22.76+4.59=27.35 22.22 242.92
 

圖4.7 活載作用下橫向框架彎矩圖(kN·m)

圖4-8 活載作用下橫向框架剪力圖  (kN)
               
      圖4-9 活載作用下橫向框架軸力圖  (kN)
4.3地震作用下橫向框架的內力計算
多遇水平地震作用下位移驗算
水平地震作用下框架結構的層間位移(△u)i和頂點位移u i分別按下列公式計算:
(△u)i = Vi/∑D ij                                                  (3-1)
u i=∑(△u)k                                 (3-2)
各層的層間彈性位移角θe=(△u)i/hi,根據《建筑抗震設計規(guī)范》,考慮磚填充墻抗側力作用的框架,層間彈性位移角限值[θe]<1/550。
計算過程如表3-8所示:
表3-8 橫向水平地震作用下的位移驗算
樓層 hi (mm) Vi (kN) ∑Di
(kN/mm)
(Δue)
(mm)
ui
(mm)
  [ ]
3600 834.07 359.72 2.32 9.38 0.00064 1/550=
0.00182
3600 1383.83 359.72 3.85 7.06 0.00107
4550 1698.98 528.84 3.21 3.21 0.00071
 
滿足要求
表4-23 各層柱反彎點位置
層 次 柱別 K y0 α2 y2 α3 y3 y
3 邊柱 1.58 0.45 1 0 1 0 0.45
中柱 2.32 0.49 1 0 1 0 0.49
2 邊柱 1.58 0.5 1 0 1.35 0 0.5
中柱 2.32 0.5 1 0 1.35 0 0.5
1 邊柱 1.99 0.65 0.74 0 \ \ 0.65
中柱 2.92 0.58 0.74 0 \ \ 0.58
 
2.確定各層中各柱分配到的剪力、柱端彎矩。
Vij=DijVi/∑Dij                                                   (4-10)
Mbij=Vijxyh                                                      (4-11)
Muij=Vij(1-y)h                        (4-12)
表4-24 地震作用下框架柱剪力及柱端彎矩
h(m) Vi(kN) ΣD 柱別 Di Vik y M下 M上
3 3.6 834.07 359.72 邊柱 13.66 28.61 0.45 -46.35 -56.65
中柱 18.49 38.73 0.49 -68.32 -71.11
2 3.6 1383.83 359.72
 
邊柱 13.66 33.83 0.5 -60.89 -60.89
中柱 18.49 45.79 0.5 -82.42 -82.42
1 4.55 1698.98 528.84 邊柱 9.2 39.8 0.65 -125.47 -67.56
中柱 10.68 46.2 0.58 -129.96 -94.11
 
 
3.梁端彎矩,剪力,軸力計算
Mlb=ilb(Mci+1,j+Mci,j)/(ilb+irb)             (4-13)
Mrb=irb(Mci+1,j+Mci,j)/(ilb+irb)             (4-14)
Vb=(Mlb+ Mrb)/l                     (4-15)
Ni=∑(Vlb- Vrb)k                     (4-16)
具體計算過程見下表:
表4-25 梁端彎矩、剪力及柱軸力的計算
層次 邊梁 走道梁 柱軸力
Mlb Mrb l Vb Mlb Mrb l Vb 邊柱N 中柱N
3 87.15 69.56 7.5 21.77 46.96 46.96 3 34.79 -43.31 -25.46
2 107.24 89.99 7.5 27.39 60.75 60.75 3 45 -70.7 -43.07
1 128.45 105.39 7.5 32.48 71.14 71.14 3 52.7 -103.18 -63.29
 

 
圖4-18  地震作用下彎矩圖
                  V                                 N
 
圖4-19   地震作用下框架剪力及柱軸力(kN)
 
 
 
 
 
 
 
 
 
 
 
 
第五章   框架內力組合
5.1 彎矩調幅
1、 彎矩調幅,取β = 0.9進行調幅,調幅計算過程見下表。
                           (5-1)
                           (5-2)
                   (5-3)
表5-1 彎矩調幅計算
恒載 層次 跨向 梁彎矩標準值 調幅系數
β
調幅后彎矩標準值
Ml0 Mr0 M中 Ml Mr M
三層 AB -87.28 -92.68 76.9 0.9 -78.55 -83.41 85.9
BC -13.82 -13.82 -5.16 0.9 -12.44 -12.44 -3.78
二層 AB -87.78 -92.94 76.51 0.9 -79 -83.65 85.55
BC -13.65 -13.65 -4.99 0.9 -12.29 -12.29 -3.63

AB -79.6 -88.2 83 0.9 -71.64 79.38 91.39
BC -17.22 -17.22 -8.56 0.9 -15.5 -15.5 -6.34
 
活載 三層 AB -27.82 -30.14 27.82 0.9 -25.04 -27.13 30.72
BC -5.21 -5.21 -1.08 0.9 -4.69 -4.69 -0.56
二層 AB -27.99 -30.21 27.71 0.9 -25.19 -27.19 30.62
BC -5.16 -5.16 -1.03 0.9 -4.64 -4.64 -0.51
一層 AB -25.29 -28.78 29.8 0.9 -22.76 -25.9 32.5
BC -6.27 -6.27 -2.14 0.9 -5.64 -5.64 -1.51
BC -2.58 -2.58 -0.51 0.9 -2.32 -2.32 -0.25
一層 AB -12.66 -14.33 14.92 0.9 -11.39 -13.43 16.27
BC -3.15 -3.15 -1.08 0.9 -2.84 -2.84 -0.77
 
一般組合采用三種組合形式即可:
①可變荷載效應控制時: 
                     
②永久荷載效應控制時,
5.2橫向框架梁內力組合
 
表5-2 橫向框架梁內力組合(一般組合)
桿件 跨向 截面 內力 恒載 活荷載 1.2恒+1.4活 1.35恒+活  
 



AB
梁左端 M -62.34 -19.65 -102.32 -103.81  
V 71.13 21.59 115.58 117.62  
跨中 M 104.64 34.93 174.47 176.19  
梁右端 M -75.88 -24.12 -124.82 -126.56  
V -75.31 -22.97 -122.53 -124.64  
BC
梁左端 M -21.71 -6.88 -35.68 -36.19  
V 12.83 3.65 20.51 20.97  
跨中 M -11.06 -3.6 -18.31 -18.53  
梁右端 M -21.71 -6.88 -35.68 -36.19  
V -12.83 -3.65 -20.51 -20.97  



AB
梁左端 M -79 -25.19 -130.07 -131.84  
V 74.36 21.97 119.99 122.36  
跨中 M 85.55 30.62 145.53 146.11  
梁右端 M -83.65 -27.19 -138.45 -140.11  
V -75.8 -22.59 -122.59 -124.92  
BC
梁左端 M -12.29 -4.64 -21.24 -21.23  
V 10.54 4.59 19.07 18.82  
跨中 M -3.63 -0.51 5.07 -5.41  
梁右端 M -12.29 -4.64 -21.24 -21.23  
V -10.54 -4.59 -19.07 -18.82  



AB
梁左端 M -71.64 -22.76 -117.83 -119.47  
V 73.89 21.8 119.19 121.55  
跨中 M 91.39 32.5 155.17 123.38  
梁右端 M -79.38 -25.9 -131.52 -133.06  
V -76.27 -22.76 -123.39 -125.72  
BC
梁左端 M -15.5 -5.64 -26.5 -26.57  
V 10.54 4.59 19.07 18.82  
跨中 M -6.34 -1.51 -9.72 -10.07  
梁右端 M -15.5 -5.64 -26.5 -26.57  
V -10.54 -4.59 -19.07 -18.82  
 
 
 
 
表5-3 橫向框架梁內力組合(考慮地震組合)
桿件 跨向 截面 內力 內力組合          
恒載 地震作用 1.2[恒+0.5(雪+活)]+1.3地震作用  
向左 向右 向左 向右  



AB
梁左端 M -62.34 26.91 -26.91 -44.13 -114.1  
V 71.13 -6.57 6.57 80.54 92.34  
跨中 M 104.64 3.26 -3.26 52.47 44.15  
梁右端 M -75.88 -20.4 20.4 -122.06 -69.02  
V -75.31 -6.57 6.57 -102.68 -85.6  
BC
梁左端 M -21.71 13.77 -13.77 -8.86 -44.66  
V 12.83 -10.2 10.2 2.52 29.04  
跨中 M -11.06 0 0 -13.63 -13.63  
梁右端 M -21.71 -13.77 13.77 -44.66 -8.86  
V -12.83 -10.2 10.2 -29.04 -2.52  



AB
梁左端 M -79 107.24 -107.24 29.48 -249.34  
V 74.36 -27.39 27.39 66.81 138.03  
跨中 M 85.55 8.63 -8.63 132.25 109.81  
梁右端 M -83.65 -89.99 89.99 -233.64 0.34  
V -75.8 -27.39 27.39 -140.12 -68.9  
BC
梁左端 M -12.29 60.75 -60.75 61.44 -96.51  
V 10.54 -45 45 -43.09 73.91  
跨中 M -3.63 0 0 -4.66 -4.66  
梁右端 M -12.29 -60.75 60.75 -96.51 61.44  
V -10.54 -45 45 -73.91 43.09  



AB
梁左端 M -71.64 128.45 -128.45 67.35 -266.62  
V 73.89 -32.48 32.48 59.54 143.98  
跨中 M 91.39 11.53 -11.53 144.18 114.2  
梁右端 M -79.38 -105.39 105.39 -248.38 25.64  
V -76.27 -32.48 32.48 -147.39 -62.94  
BC
梁左端 M -15.5 71.14 -71.14 70.47 -114.49  
V 10.54 -52.7 52.7 -53.1 83.92  
跨中 M -6.34 0 0 -8.53 -8.53  
梁右端 M -15.5 -71.14 71.14 -114.49 70.47  
V -10.54 -52.7 52.7 -83.92 53.1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.3橫向框架柱內力組合
表5-4 橫向框架柱內力組合(一般組合)
桿件 跨向     恒載 活荷載 1.2恒+1.4活 Nmax及相應的N Nmin及相應的M Nmax及相應的M  
 
三層柱 A柱 柱頂 M 40.55 13.26 67.22 75.17 55.56 68.00  
N 369.91 95.96 578.24 571.55 558.05 595.34  
柱底 M 40.07 13.11 66.44 72.63 56.58 67.2  
N 392.41 95.96 529.64 598.56 585.05 625.71  
B柱 柱頂 M -35.44 -11.07 -58.03 -68.82 -68.82 -58.91  
N 503.87 143.95 806.17 782.08 782.08 824.17  
柱底 M -35.19 -10.99 57.61 -67.94 -67.94 -58.5  
N 526.37 143.95 833.17 809.08 809.08 854.55  
二層柱 A柱 柱頂 M 41.54 13.59 68.87 78.9 55.04 69.67  
N 507.27 128.06 788.00 781.92 758.24 812.87  
柱底 M 48.85 15.98 80.99 90.69 66.82 81.93  
N 529.77 128.06 815.01 808.92 785.24 843.25  
B柱 柱頂 M -36.1 -11.26 -59.08 -73.62 -73.62 -60.00  
N 690.77 193.35 1099.61 1065.34 1065.34 1125.89  
柱底 M -41.28 -12.86 67.54 -81.86 -81.86 -68.59  
N 713.27 193.35 1126.61 1092.33 1092.33 1156.26  
底層柱 A柱 柱頂 M 24.66 8.05 40.86 55.61 23.86 41.34  
N 652.44 159.99 1006.91 1003.39 965.64 1040.78  
柱底 M 12.33 4.03 20.44 49.35 -9.6 20.68  
N 682.75 159.99 1043.29 1039.76 1002.01 1081.7  
V -7.63 -2.49 -11.65 -21.64 -2.94 -12.79  
B柱 柱頂 M -21.89 -6.86 -29.75 -57.01 -57.01 -36.41  
N 885.45 242.92 1402.67 1357.05 1357.05 1438.28  
柱底 M -10.95 -3.43 -17.94 -47.98 -47.98 -18.21  
N 915.79 242.92 1439.04 1393.46 1393.46 1479.24  
V 6.77 2.12 11.09 24.05 24.05 11.26  
 
 
注:表中畫橫線數值用于后面的基礎設計中。

 
表5-5 橫向框架柱內力組合(考慮地震組合)
        恒載 活荷載 地震作用 1.2恒++1.3地震作用+0.5活 ±|Mmax|及相應的 N Nmin及相應的M Nmax及相應的M
向左 向右 向左 向右
三層柱 A柱 柱頂 M 40.55 13.26 -56.65 56.65 -17.01 130.29 130.29 -17.01 130.29
N 369.91 95.96 -43.31 43.31 430.78 543.38 543.38 430.78 543.38
柱底 M 40.07 13.11 -46.35 46.35 -4.29 116.22 116.22 -4.29 116.22
  392.41 95.96 -43.31 43.31 457.78 570.38 570.38 457.78 570.38
B柱 柱頂 M -35.44 -11.07 -71.11 71.11 -141.74 43.15 -141.74 -141.74 43.15
N 503.87 143.95 -25.46 25.46 632.57 698.76 632.57 632.57 698.76
柱底 M -35.19 -10.99 -68.32 68.32 -137.79 39.84 -137.79 -137.79 39.84
N 526.37 143.95 -25.46 25.46 659.57 725.76 659.57 659.57 725.76
二層柱 A柱 柱頂 M 41.54 13.59 -60.89 60.89 -21.13 137.19 137.19 -21.13 137.19
N 507.27 128.06 -70.7 70.7 579.24 763.06 763.06 579.24 763.06
柱底 M 48.85 15.98 -60.89 60.89 -10.93 147.39 147.39 -10.93 147.39
N 529.77 128.06 -70.7 70.7 606.24 790.06 790.06 606.24 790.06
B柱 柱頂 M -36.1 -11.26 -82.42 82.42 -157.32 56.97 -157.32 -157.32 56.97
N 690.77 193.35 -43.07 43.07 861.4 973.38 861.4 861.4 973.38
柱底 M -41.28 -12.86 -82.42 82.42 -164.55 49.74 -164.55 -164.55 49.74
N 713.27 193.35 -43.07 43.07 888.4 1000.38 888.4 888.4 1000.38
底層柱 A柱 柱頂 M 24.66 8.05 -67.56 67.56 -53.4 122.26 122.26 -53.4 122.26
N 652.44 159.99 -103.18 103.18 730.36 998.63 998.63 730.36 998.63
柱底 M 12.33 4.03 -125.47 125.47 -145.89 180.33 180.33 -145.89 180.33
N 682.75 159.99 -103.18 103.18 766.73 1035 1035 766.73 1035
V -7.63 -2.49 39.8 -39.8 41.08 -62.4 -62.4 41.08 -62.4
B柱 柱頂 M -21.89 -6.86 -94.11 94.11 -152.76 91.92 -152.76 -152.76 91.92
N 885.45 242.92 -63.29 63.29 1096.27 1260.82 1096.27 1096.27 1260.82
柱底 M -10.95 -3.43 -129.96 129.96 -184.16 153.73 -184.16 -184.16 153.73
N 915.79 242.92 -63.29 63.29 1132.68 1297.23 1132.68 1132.68 1297.23
V 6.77 2.12 46.2 -46.2 69.47 -50.65 69.47 69.47 -50.65
注:表中畫橫線數值用于基礎抗震設計中。
 

第六章   框架梁、柱截面設計
6.1框架梁截面設計
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

注:正截面受彎承載力計算時,負彎矩處按矩形截面計算,正彎矩處按T形截面計算。
表 6-1橫梁AB、BC跨正截面受彎承載力計算
混凝土強度等級 b×h
(mm2)
截面位置 組合內力 柱邊截面彎矩   
(kN.m)
h0
(mm)
  ξ   (mm2)   
實際選用(mm2)
備注
M
(kN.m)
V(kN)

C25 300×700 A3支 座 -140.33 120.49 -110.21 660 0.082 0.086 685 3 18,As=763 ξ﹤0.55
跨 中 146.69   146.69 660 0.014 0.014 879 3 20,As=942 ξ﹤0.55
B3支座左 -145.84 -123.1 -115.07 660 0.086 0.090 717 3 18,As=763 ξ﹤0.55
300×400 B3支座右 -28.65 25.46 -22.29 360 0.040 0.041 176 2 14,As=308 ξ﹤0.55
跨 中 -5.66   -5.66 360 0.010 0.010 44 2 14,As=308 ξ﹤0.55
C3支座左 -28.65 -25.46 -22.29 360 0.040 0.041 176 2 14,As=308 ξ﹤0.55
三層 C25 300×700 A2支 座 -146.5 122.00 -116.00 660 0.086 0.090 723 3 18,As=763 ξ﹤0.55
跨 中 146.11   146.11 660 0.014 0.014 876 3 20,As=942 ξ﹤0.55
B2支座左  -151.35 -124.51 -182.48 660 0.136 0.146 1172 4 20,As=1256 ξ﹤0.55
300×400 B2支座右 - 31.87 26.79 -25.17 360 0.045 0.046 199 2 14,As=308 ξ﹤0.55
跨 中 -5.41   -5.41 360 0.010 0.010 42 2 14,As=308 ξ﹤0.55
C2支座左 -31.87 -26.79 -25.17 360 0.045 0.046 199 2 14,As=308 ξ﹤0.55

C25 300×700 A1支 座 -142.45 123.17 -111.66 660 0.083 0.087 695 3 18,As=763 ξ﹤0.55
跨 中 155.17   155.17 660 0.014 0.014 930 3 20,As=942 ξ﹤0.55
B1支座左 -150.72 -127.23 -118.91 660 0.088 0.093 742 3 18,As=763 ξ﹤0.55
300×400 B1支座右 -41.09 29.82 -33.64 360 0.060 0.062 268 2 14,As=308 ξ﹤0.55
跨 中 -10.07   -10.07 360 0.018 0.018 78 2 14,As=308 ξ﹤0.55
C1支座左 -41.09 -29.82 -33.64 360 0.060 0.062 268 2 14,As=308 ξ﹤0.55
 
表 6-2 橫梁AB、BC跨正截面抗震驗算
混凝土強度等級 b×h
(mm2)
截面位置 組合內力 柱邊截面彎矩  
 (kN.m)
  h0
(mm)

 
 
 
ξ  (mm2)  實際選用
(mm2)
備注
M
(kN.m)
V(kN)
頂層 C25 300×700 A3支 座 -222.59 130.67 -189.92 0.75 660 0.106 0.112 898 3 20,As=942 安全
跨 中 132.95   132.95 0.75 560 0.074 0.077   3 20,As=942 安全
B3支座左 -206.78 -115.43 -235.64 0.75 660 0.131 0.141 1132 3 22,As=1140 安全
300×400 B3支座右 -78.78 60.64 -63.62 0.75 360 0.086 0.090 385 3 14,As=461 安全
跨 中 -4.86   -4.86 0.75 360 0.007 0.007   2 14,As=308 安全
C3支座左 -78.78 -130.67 -111.45 0.75 360 0.150 0.164 702 3 18,As=763 安全
三層 C25 300×700 A2支 座 -249.34 138.03 214.83 0.75 660 0.120 0.128 1025 4 18,As=1017 安全
跨 中 132.25   132.25 0.75 660 0.074 0.077   3 20,As=942 安全
B2支座左 -233.64 -140.12 -268.67 0.75 660 0.150 0.163 1306 4 20As=1256 安全
300×400 B2支座右 -96.51 73.91 -78.03 0.75 360 0.105 0.111 478 3 14,As=461 安全
跨 中 -4.66   -4.66 0.75 360 0.006 0.006   2 14,As=308 安全
C2支座左 -96.51 -73.91 -114.99 0.75 360 0.155 0.169 727 3 18,As=763 安全
二層 C25 300×700 A1支 座 -266.62 143.98 -230.63 0.75 660 0.129 0.138 1106 3 22As=1140 安全
跨 中 144.18   144.18 0.75 660 0.080 0.084   3 20,As=942 安全
B1支座左 -248.38 -147.39 -285.23 0.75 660 0.159 0.174 1395 3 25,As=1473 安全
300×400 B1支座右 -114.49 83.92 -93.51 0.75 360 0.126 0.135 580 3 16,As=603 安全
跨 中 -8.53   -8.53 0.75 360 0.012 0.012   2 14,As=308 安全
C1支座左 -114.49 83.92 -93.51 0.75 360 0.126 0.135 580 3 16,As=603 安全
注:正截面抗震驗算時,負彎矩處按矩形截面計算,正彎矩處按T形截面計算。梁內縱筋由抗震設計要求控制。表中空格處表示按抗震計算的配筋小于按抗彎承載力計算的配筋,取抗彎承載力的配筋。
 
表 6-3橫梁AB、BC跨斜截面受剪承載力計算  
層次 混凝土
強度等級
b×h
(mm2)
斜截面
位  置
組合內力
V(kN)
h0 0.25βcfcbh0
(kN)
0.                 7ftbh0
(kN)
選用箍筋
(雙肢)

(kN)
備注  
 
 
頂層 C25 300×700 A3支座 120.49 660 600.60 168.17 8@100 316.64 安全  
B3支座左 123.1 660 600.60 168.17 8@100 316.64 安全  
300×400 B3支座右 25.46 360 321.75 90.09 8@100 185.54 安全  
C3支座左 25.46 360 321.75 90.09 8@100 185.54 安全  
三層 C25 300×700 A2支座 122.00 660 600.60 168.17 8@100 316.64 安全  
B2支座左 124.51 660 600.60 168.17 8@100 316.64 安全  
300×400 B2支座右 26.79 360 321.75 90.09 8@100 185.54 安全  
C2支座左 26.79 360 321.75 90.09 8@100 185.54 安全  
二層 C25 300×700 A1支座 123.17 660 600.60 168.17 8@100 316.64 安全  
B1支座左 127.23 660 600.60 168.17 8@100 316.64 安全  
300×400 B1支座右 29.82 360 321.75 90.09 8@100 185.54 安全  
C1支座左 29.82 360 321.75 90.09 8@100 185.54 安全  
 
 
 
 
 
 
 
 
 
 
 
 
表 6-4橫梁AB、BC跨斜截面受剪抗震驗算    
混凝土強度等級 b×h
(mm2)
斜截面
位  置
(kN) (kN.m) 組合內V(kN) h0     (kN)
(kN)
選用箍筋
(雙肢)

(kN)
備注  
 
 
頂層 C25 300×700 A3支座 102.37 210.78 134.57 660 565.27 118.71 8@100 293.37    
B3支座左 104.56 210.78 136.76 660 565.27 118.71 8@100 293.37    
300×400 B3支座右 15.41 121.88 65.06 360 302.82 63.59 8@100 175.88    
C3支座左 15.41 121.88 65.06 360 302.82 63.59 8@100 175.88    
三層 C25 300×700 A3支座 102.42 263.12 142.62 660 565.27 118.71 8@100 293.37    
B3支座左 104.51 263.12 144.71 660 565.27 118.71 8@100 293.37    
300×400 B3支座右 15.41 157.95 79.76 360 302.82 63.59 8@100 175.88    
C3支座左 15.41 157.95 79.76 360 302.82 63.59 8@100 175.88    
二層 C25 300×700 A1支座 101.76 315.73 150.00 660 565.27 118.71 8@100 293.37    
B1支座左 105.67 315.73 153.91 60 565.27 118.71 8@100 293.37    
300×400 B1支座右 15.41 184.96 90.76 360 302.82 63.59 8@100 175.88    
C1支座左 15.41 184.96 90.76 360 302.82 63.59 8@100 175.88    
                             

6.2 框架柱截面設計
表6-5框架柱正截面壓彎承載力計算(|Mmax|)
A柱 層次 砼強度 b×h lo lo/h 柱截面 組合內力 eo ea ei ei/ho ζ1 ζ2 η e ξ 判斷破壞類型
ζ<ζb
ζb =0.55
大偏壓 x-2a' As=As'(mm2)
(x<2a')
As=As'(mm2)
(x>2a')
選用鋼筋(mm2) 備注
(mm2) (m) Mmax (kN.m) N(kN) (mm) (mm) (mm) (mm) ξ
三層 C25 500×500 4.5 9 上端 75.17 571.55 131.52 20 151.52 0.33 1.00 1.00 1.18 388.13 0.18 大偏壓 0.18 2.8   <0 2Φ18,As=As'=509 ρ>0.215%
9 下端 72.63 598.56 121.34 20 141.34 0.31 1.00 1.00 1.19 377.96 0.18 大偏壓 0.18 3.71   <0 2Φ18,As=As'=509 ρ>0.215%
二層 C25 500×500 4.5 9 上端 78.9 781.92 100.91 20 120.91 0.26 1.00 1.00 1.22 357.52 0.24 大偏壓 0.24 29.36   <0 2Φ18,As=As'=509 ρ>0.215%
9 下端 90.69 808.92 112.11 20 132.11 0.29 1.00 1.00 1.20 368.73 0.25 大偏壓 0.25 33.14   <0 2Φ18,As=As'=509 ρ>0.215%
底層 C25 500×500 4.55 9.7 上端 55.61 1003.39 55.42 20 75.42 0.16 1.00 1.00 1.41 316.34 0.31 大偏壓 0.31 60.33   <0 2Φ18,As=As'=509 ρ>0.215%
9.7 下端 49.35 1039.76 47.46 20 67.46 0.15 1.00 1.00 1.46 308.38 0.32 大偏壓 0.32 65.42   <0 2Φ18,As=As'=509 ρ>0.215%
 
表6-6框架柱正截面壓彎承載力計算(|Mmax|)
B柱 層次 砼強度 b×h lo lo/h 柱截面 組合內力 eo ea ei ei/ho ζ1 ζ2 η e ξ 判斷破壞類型
ζ<ζb
ζb =0.55
小偏壓 As=As' 大偏壓 x-2a' e' As=As'(mm2)
(x<2a')
As=As'(mm2)
(x>2a')
選用鋼筋(mm2) 備注
(mm2) (m) Mmax (kN.m) N(kN) (mm) (mm) (mm) (mm) ξ (mm2) ξ
三層 C25 500×500 4.5 9 上端 68.82 782.08 88.00 20 108.00 0.23 1.00 1.00 1.25 344.61 0.24 大偏壓     0.24 29.38     <0 2Φ18,As=As'=509 ρ>0.215%
9 下端 67.94 809.08 83.97 20 103.97 0.23 1.00 1.00 1.26 340.59 0.25 大偏壓     0.25 33.16     <0 2Φ18,As=As'=509 ρ>0.215%
二層 C25 500×500 4.5 9 上端 73.62 1065.34 69.10 20 89.10 0.19 1.00 1.00 1.30 325.72 0.32 大偏壓     0.32 69.00     <0 2Φ18,As=As'=509 ρ>0.215%
9 下端 81.86 1092.33 74.94 20 94.94 0.21 1.00 1.00 1.28 331.56 0.33 大偏壓     0.33 72.77     <0 2Φ18,As=As'=509 ρ>0.215%
底層 C30 500×500 4.55 9.7 上端 57.01 1357.05 42.01 20 62.01 0.13 1.00 1.00 1.50 302.93 0.41 大偏壓     0.41 109.80     <0 2Φ18,As=As'=509 ρ>0.215%
9.7 下端 47.98 1393.46 34.43 20 54.43 0.12 1.00 1.00 1.57 295.35 0.42 大偏壓     0.42 114.89     <0 2Φ18,As=As'=509 ρ>0.215%
表6-11框架柱正截面壓彎抗震驗算(|Mmax|)
A柱 層次 砼強度 b×h lo lo/h 柱截面 組合內力 eo ea ei ei/ho ζ1 ζ2 η e ξ 判斷破壞類型
ζ<ζb
ζb =0.55
小偏壓 As=As' 大偏壓 x-2a' e' As=As'(mm2)
(x<2a')
As=As'(mm2)
(x>2a')
選用鋼筋(mm2) 備注
(mm2) (m) Mmax (kN.m) N(kN) (mm) (mm) (mm) (mm)    ξ (mm2) ξ
三層 C25 500×500 4.5 9 上端 122.42 543.38 225.29 20 245.29 0.53 1.00 1.00 1.11 481.91 0.17 大偏壓     0.17 -4.00 61.91 267   2Φ18,As=As'=509 ρ>0.215%
9 下端 137.14 570.38 240.44 20 260.44 0.57 1.00 1.00 1.10 497.05 0.17 大偏壓     0.17 -0.23 77.05 349   2Φ18,As=As'=509 ρ>0.215%
二層 C25 500×500 4.5 9 上端 137.14 763.06 179.72 20 199.72 0.43 1.00 1.00 1.13 436.34 0.23 大偏壓     0.23 26.72     180 2Φ18,As=As'=509 ρ>0.215%
9 下端 168.34 790.06 213.07 20 233.07 0.51 1.00 1.00 1.11 469.69 0.24 大偏壓     0.24 30.50     407 2Φ18,As=As'=509 ρ>0.215%
底層 C25 500×500 4.55 9.7 上端 124.94 998.63 125.11 20 145.11 0.32 1.00 1.00 1.21 386.03 0.30 大偏壓     0.30 59.67     <0 2Φ18,As=As'=509 ρ>0.215%
9.7 下端 180.33 1035.00 174.23 20 194.23 0.42 1.00 1.00 1.16 435.15 0.31 大偏壓     0.31 64.76     390 2Φ18,As=As'=509 ρ>0.215%
表6-12框架柱正截面壓彎抗震驗算(|Mmax|)
B柱 層次 砼強度 b×h lo lo/h 柱截面 組合內力 eo ea ei ei/ho ζ1 ζ2 η e ξ 判斷破壞類型
ζ<ζb
ζb =0.55
小偏壓 As=As' 大偏壓 x-2a' e' As=As'(mm2)
(x<2a')
As=As'(mm2)
(x>2a')
選用鋼筋(mm2) 備注
(mm2) (m) Mmax (kN.m) N(kN) (mm) (mm) (mm) (mm)    ξ (mm2) ξ
三層 C25 500×500 4.5 9 上端 141.74 632.57 224.07 20 244.07 0.53 1.00 1.00 1.11 480.68 0.19 大偏壓     0.19 8.47     326 2Φ18,As=As'=509 ρ>0.215%
9 下端 137.79 659.57 208.91 20 228.91 0.50 1.00 1.00 1.12 465.52 0.20 大偏壓     0.20 12.25     270 2Φ18,As=As'=509 ρ>0.215%
二層 C25 500×500 4.5 9 上端 157.32 861.4 182.63 20 202.63 0.44 1.00 1.00 1.13 439.25 0.26 大偏壓     0.26 40.48     179.86 2Φ18,As=As'=509 ρ>0.215%
9 下端 164.55 888.4 185.22 20 205.22 0.45 1.00 1.00 1.13 441.83 0.27 大偏壓     0.27 44.25     407.17 2Φ18,As=As'=509 ρ>0.215%
底層 C25 500×500 4.55 9.7 上端 152.76 1096.27 139.35 20 159.35 0.35 1.00 1.00 1.19 400.26 0.33 大偏壓     0.33 73.32     <0 2Φ18,As=As'=509 ρ>0.215%
9.7 下端 184.16 1132.68 162.59 20 182.59 0.40 1.00 1.00 1.17 423.50 0.34 大偏壓     0.34 78.42     390.38 2Φ18,As=As'=509 ρ>0.215%
 
 

第七章  樓梯結構設計
樓梯間開間為8.1m,進深為7.5m。采用板式樓梯底層,共26級踏步,踏步寬0.28m,其踏步的水平投影長度為12×0.28=3.36m。二至三層樓梯均為等跑樓梯,共24級踏步,踏步寬0.28m,其踏步的水平投影長度為11×0.28=3.08m。樓梯的踢面和踏面均采用瓷磚面層,踏面采用防滑處理,底面為水泥砂漿粉刷;炷翉姸鹊燃塁25,板采用HPB235鋼筋,梁縱筋采用HRB335鋼筋。
7.1 樓梯板計算
 
板傾斜度     tgα=150/300=0.5     cosα=0.894
設板厚h=120mm,h=1/30—1/25=118—142 mm板厚滿足要求
取1m寬板帶計算。
1、荷載計算:
梯段板的荷載:
荷載種類 荷載標準值(KN/m)
恒載 30厚瓷磚 (0.3+0.15)×0.55/0.3=0.825
三角形踏步 0.3×0.15×25/2/0.3=1.875
斜板 0.12×25/0.894=3.356
板底抹灰 0.02×17/0.894=0.38
小計 6.436
活荷載 2.5
荷載分項系數rG=1.2      rQ=1.4
設計值:g=1.2×6.436=7.723 KN/m
q=1.4×2.5=3.5KN/m
基本組合的總荷載設計值  g+q=7.723+3.5=11.223 KN/m
2、截面設計:
板水平計算跨度
跨中最大彎矩     M=(g+q)lo2/10=11.223×3.552/10=14.143 KN·m
h0=120-20=100 mm
αs=M/(fcmbh02)=14.143×106/(1.0×14.3×1000×1002)=0.099
rs=0.948
As=M /(rsfyh0)=14.143×106/(0.948×210×100)=710 mm2
選 10@100,實有As=714 mm2,
分布筋 8@200,
7.2 平臺板計算
設平臺板厚h=100mm,取1m寬板帶計算。
1、荷載計算:
平臺板的荷載:
平臺板荷載
荷載種類 荷載標準值(KN/m)
恒載 30厚瓷磚 0.55
100厚混凝土板 0.1×25=2.5
板底抹灰 0.02×17=0.34
小計 3.39
活荷載 2.5
荷載分項系數rG=1.2      rQ=1.4
設計值:g=1.2×3.39=4.068 KN/m
q=1.4×2.5=3.5KN/m
基本組合的總荷載設計值   p= g+q =7.568KN/m
2、截面設計:
靠窗的平臺板:
l0=2500-125+100/2=2.125m
M=(g+q)l02/8=7.568×2.1252/8=4.272 KN·m
αs=M/(fcbf,h02)= =0.07
ξ=1-(1-2αs)1/2=0.073
As=ξfcb,h0/fy= =267 mm2
選 8@180,實有As=279 mm2,
分布筋 6@200, 支座按構造要求配筋
靠走廊的平臺板:
l0=1400-125+100/2=1.325m
M=(g+q)l02/8=7.568×1.3252/8=1.661 KN·m
αs=M/(fcbf,h02)= =0.027
ξ=1-(1-2αs)1/2=0.027
As=ξfcb,h0/fy= =99mm2
選 6@180,實有As=157 mm2,
分布筋 6@200, 支座按構造要求配筋
7.3 平臺梁計算
設平臺梁截面  b=250mm     h=300mm
1、荷載計算:
平臺梁1的荷載:
荷載種類 荷載標準值(KN/m)
恒載 梁自重 0.25×(0.3-0.1)×25=1.2
梁側及底抹灰 [2×(0.3-0.1)+0.25]×0.02×17=0.218
平臺板傳來 3.39×(2.2+0.245)/2=4.144
梯段板傳來 6.436×3.3/2=10.619
小計 16.159
設計值: =(1.2+0.218+10.619)×1.2=14.423 KN/m
=4.114×1.2=4.937 KN/m4
活荷載:梯段板傳來:2.5×3.3/2=4.125 KN/m
平臺板傳來:  KN/m
設計值:  KN/m
 KN/m
平臺梁2的荷載:b=240mm        h=300mm
平臺梁2荷載
荷載種類 荷載標準值(KN/m)
恒載 梁自重 0.25×(0.3-0.1)×25=1.2
梁側及底抹灰 [2×(0.3-0.1)+0.25]×0.02×17=0.218
平臺板傳來 3.39×(1.4+0.245)/2=2.789
梯段板傳來 6.436×3.3/2=10.619
小計 14.826
設計值: =(1.2+0.218+10.619)×1.2=14.423 KN/m
=2.789×1.2=3.347 KN/m
活荷載:梯段板傳來:2.5×3.3/2=4.125 KN/m
平臺板傳來:  KN/m
設計值:  KN/m
 KN/m
2、截面設計:
TL1:
計算跨度l0=1.05ln=1.05×(4.5-0.25)=4.473 ml2
支座最大剪力:

=
=
跨中最大彎矩:
M=(g1+q1)l02/8/2+(g2+q2)l02/8
=(14.423+4.125) ×4.4732/8/2+(4.937+4.27) ×4.4732/8
=46.22KN
截面按倒L形計算,
bf,= mm
按梁凈距考慮
不按梁的高度 考慮:
h0=300-35=265 mm
由于       取


屬第一類T形截面。
αs=M/(fcmbh02)=46.22×106/(1.0×14.3×746×2652)=0.0617
rs=0.968
As=M /(rsfyh0)=46.22×106/(210×0.968×265)=858 mm2
選3 20實有As=942 mm2
受剪承載力計算:

截面尺寸滿足要求

僅需按構造要求配置箍筋
選用雙肢 8@200,
TL2:
計算跨度l0=1.05ln=1.05×(4.5-0.24)=4.473 ml2
支座最大剪力:

=
=
跨中最大彎矩:
M=(g1+q1)l02/8/2+(g2+q2)l02/8
=(14.423+4.125) ×4.4732/8/2+(3.347+3.29) ×4.4732/8
=44.951KN
截面按倒L形計算,
bf,= mm
按梁凈距考慮
不按梁的高度 考慮:
h0=300-35=265 mm
由于       取


屬第一類T形截面。
αs=M/(fcmbh02)=44.951×106/(1.0×14.3×746×2652)=0.06
rs=0.969
As=M /(rsfyh0)=44.951×106/(210×0.969×265)=834 mm2
選3 20實有As=942 mm2
受剪承載力計算:

截面尺寸滿足要求

僅需按構造要求配置箍筋
選用雙肢 8@200,
 
 
 
 
 
 
 
第八章  現澆樓蓋設計
8.1現澆樓蓋設計
樓板厚120mm,樓面活荷載標準值2 kN/m2。走廊活荷載標準值2.5 kN/m2。鋼筋混凝土板泊松比ν=1/6。
1、 荷載設計值:
辦公室恒載設計值    g=4.01×1.2=4.55kN/m2
   活載設計值    q=2×1.4=2.8kN/m2     
走廊恒載設計值      g = 1.2×4.01= 4.55kN/m2
 活載設計值      q=2.5×1.4=3.5kN/m2
所以 教室部分  p=g + q =4.55+2.8=7.35kN/m2
                p,= g + q/2=4.55+2.8/2=5.9kN/m2
                p ,,= q/2=2.8/2=1.4kN/m2
      走廊部分     p=g + q =4.55+3.5=8.0kN/m2
                p,= g + q/2=4.55+3.5/2=6.3kN/m2
                p ,,= q/2=3.5/2=1.75kN/m2

2、 按雙向板彈性理論計算區(qū)格彎矩:
A區(qū)格板:      lx=3.75m
               ly=4.05m
               lx / ly =3.75/4.05=0.625
查《混凝土與砌體結構設計》附表得兩鄰邊固定兩鄰邊簡支時的彎矩和四邊簡支時的系數(表中α為彎矩系數)
lx/ly 支承條件           
   0.63 兩鄰邊固定兩鄰邊簡支   0.0508  0.0257   -0.1065   -0.0757
四邊簡支   0.0821  0.0389     —     —


 
 


3.截面設計
板跨中截面兩個方向有效高度的確定
假定鋼筋選用φ10,則
                 
板支座截面有效高度為
由于樓蓋周邊按鉸支考慮,因此I角區(qū)板的彎矩不折減,而中央區(qū)格和 的區(qū)格板的跨中彎矩和支座彎矩可減少20%,但考慮到本設計中彎矩值均較小,可不做折減。計算配筋時,近似取內力臂系數 ,
表8-1  雙向板配筋計算表
 
截面
 
h
(mm)
M
(kNm/m)

( )
 
配筋情況
 
實配
( )
 
 
 
 


 
 
A
 方向 90 4.2 301 φ10@200 393
 方向 100 8.45 529 φ10@150 523
 
B
 方向 90 1.64 117 φ10@200 393
 方向 100 3.51 220 φ10@200 393
 
C
 方向 90 2.88 206 φ10@200 393
 方向 100 6.4 401 φ10@200 393
 
D
 方向 90 0.89 64 φ10@200 393
 方向 100 2.27 142 φ10@200 393
 
 
 
 

A-C   100 -12.68 794 φ10@100 785
A-D   100 -9.02 565 φ10@140 561
A-B   100 -9.02 565 φ10@140 561
B-D   100 -3.67 230 φ10@200 393
C-C   100 -9.56 599 φ10@130 604
D-C   100 -6.81 427 φ10@180 436
D-D   100 -2.68 167 φ10@200 393
 
 
 
 
 
 
 
 
 
 
 
第九章  基礎設計
9.1 荷載計算
按照《地基基礎設計規(guī)范》和《建筑抗震設計規(guī)范》的有關規(guī)定,上部結構傳至基礎頂面上的荷載只需按照荷載效應的基本組合來分析確定。
混凝土設計強度等級采用C30,基礎底板設計采用HRB335鋼,fy=300 N/mm,室內外高差為0.45 m,基礎埋置深度為1.2m,基礎高度600mm。上柱斷面為500×500,基礎部分柱斷面保護層加大,兩邊各增加50,故地下部分柱頸尺寸為600×600
層次 土類 平均厚度
(m)
承載力特征值fak(kPa) 重度
(KN/m3)
土層剪切波速(m/s)
1 雜填土 0.8 90 16.5  
2 素填土 0.9 100 16.0  
3 粉塵沙土 6.2 160 19.2 200
4 粉土 5.7 140 19.0 180
5 粉質粘土 7.9 225 19.4 350
 
基礎承載力計算時,應采用荷載標準組合。
,取兩者中大者。
以軸線3為計算單元進行基礎設計,上部結構傳來柱底荷載標準值:
表9-1荷載標準組合
內力 恒載 活荷載 恒k+活k
A柱 M 12.33 4.03 16.36
N 682.75 159.99 842.74
V -7.63 -2.49 -10.17
B柱 M -10.95 -3.43 -14.38
N 915.79 242.92 1158.71
V 6.77 2.12 8.89
 
底層墻、基礎連系梁傳來荷載標準值(連系梁頂面標高同基礎頂面)
墻重: 0.00以上 :5.5×0.2×3.9=4.29kN/m(粉煤灰輕渣空心砌塊, =5.5 )
    0.00以下 :19×0.24×0.95=4.33kN/m(采用一般粘土磚, =19 )
連梁重:(400×240)
    
     (與縱向軸線距離0.15)
柱A基礎底面: FK = 842.74 +11.02 4.5 =892.33kN
            MK=37.01 +11.02 4.5×0.15+16.55×0.6 = 54.38kN·m
柱B基礎底面: FK =1158.71+11.02 4.5 = 1208.3kN
              MK=14.38+11.02 4.5×0.15+8.89 0.6=27.15kN·m
9.2 確定基礎底面積
A、D柱下采用鋼筋混凝土獨立基礎,B、C采用鋼筋混凝土聯(lián)合基礎,
根據地質條件取②層粉質粘土層作為持力層,設基礎在持力層中的嵌固深度為0.1m,室外埋深1.2,室內埋深1.65 m,(室內外高差0.45m)。
1.A柱:
(1)初估基底尺寸
由于基底尺寸未知,持力層土的承載力特征值先僅考慮深度修正,由于持力層為粉質粘土,故取 =1.6
=(16.5 1.0+16 0.5)/1.5=17.4
=100+1.6 17.4 (1.5-0.5) = 192.84
         = = 6.2
        設 =1.2     = =2.27
           取b=2.3m,l=2.8m
(2)按持力層強度驗算基底尺寸:
基底形心處豎向力: =892.33+20 2.3 2.8 (1.5+1.95) = 1114.5
基底形心處彎矩:  = 54.38
  偏心距: = = 0.049 < = 0.47
  <
  <
  滿足要求。
2.B柱:
因B、C軸向距僅3 ,D、E柱分別設為獨立基礎場地不夠,所以將兩柱做成雙柱聯(lián)合基礎。
因為兩柱荷載對稱,所以聯(lián)合基礎近似按中心受壓設計基礎,基礎埋深1.2 。

       設  l=5.6m,b=3m, A=16.8m2
按持力層強度驗算基底尺寸:
基底形心處豎向力: =1208.3+20 5.6 3 (1.5+1.65) = 1787.9
基底形心處彎矩:  = 27.15
偏心距: = = 0.015 < = 0.93
<
<
滿足要求。
9.3 基礎結構設計(混凝土采用C20)
1.荷載設計值
基礎結構設計時,需按荷載效應基本組合的設計值進行計算。
  A柱:F=1039.76+11.02×4.5×1.2=1099.27kN
        M=49.35+11.02×4.5×1.2×0.15+0.6×21.64=71.26kN.m
(B-C)柱:  
        
2.A柱:
(1)基底凈反力:

(2)沖切驗算
  
  
  
  
  
     
        
         =1.24m2
 
 
   基礎高度滿足要求。
(3)配筋
 
 


=
=216.26kN.m
   
     選Φ14@110

        
         =140.56 kN.m
    
配Φ14@160
注:短邊鋼筋放在長邊鋼筋內側,所以有效計算高度差10mm。
3.(B-C)柱基
   基礎高度  (等厚)
(1)基底凈反力:
(2)沖切驗算:計算簡圖見圖9-2。
要求
  
  
  ,
 
 
      滿足要求。
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

圖9-2   沖切驗算計算簡圖彎矩和剪力的計算結果
(3)縱向內力計算
  ,彎矩和剪力的計算結果見圖9-4。
(4)抗剪驗算
柱邊剪力:    

   滿足要求。
(5)縱向配筋計算
  板底層配筋:  
   折算成每米板寬3596.62/5.6=642
選 Φ14@200  As=770
板頂層配筋:按構造配筋φ10@200 As=393
(6)橫向配筋
柱下等效梁寬為:  
柱邊彎矩:
           
 
折算成每米梁寬2718/3=906
選Φ14@170,
 
 
 
 
 
 
 
 
 
 
 
 
 
第十章  科技資料翻譯
一、科技資料原文:
Castle Bridge, Weston-Super-Mare, UK
Castle Bridge is a minimal-cost solution to the dilemmaof a restricted crossing of a main railway line within a residential development area. The works employs reinforced earth embankments, integrated bridge deck andabutment construction and precast parapet solutions toovercome and minimise the safety, maintenance and costissues associated with the scheme.
1. INTRODUCTION
This paper describes a minimal-cost solution to a road bridgeover a railway, on a restricted site, to open up land for residential development. Locking Castle is an area under heavy residential development on the eastern side of Weston-Super Mare. Overseeing the development and client for the bridge isLocking Castle Limited, a company owned in consortium by two major house builders. The planning authority is North Somerset District Council (NSDC). The development area is splitin half by the Bristol to Exeter main railway line. Planning conditions for the area stipulated that the southern area couldnot be inhabited until a crossing of this railway line had beenbuilt. Fig. 1 shows the Locking Castle development and theimportance of the bridge to the area.
The development area is situated on the edge of the SomersetLevels, an area noted for its poor ground conditions, and is bounded by a railway line to Weston to the north and the A321dual carriageway to the south. Moor Lane, an existing countryroad, was the only access to the southern area and was notsuitable for the traffic expected by the increased housing stock.
Owing to the nature of the Somerset Levels, the new road overthe railway lines would have to be raised on embankments onboth sides of the track. An area of land had been reserved for the crossing but this area was small in comparison to a normalcrossing, which led to a number of compromises in the layoutof the structure. A blanket 20 mph speed limit, coupled with area-wide speed restriction measures, coverthewholeLockingCastledevelopment. This enabled the roads to be laid to a tightradius on the approaches to the bridge and also allowed theclient to agree, with NSDC, that steeper than normal gradientscould be used to attain the elevation of the crossing.
The client’s engineer, Arup, agreed general design principlesand the preliminary Approval in Principle (AIP) with NSDCprior to the issue of tender documents.
The contract was awarded to Dean & Dyball in July 2000 for atender value of £1·31 million and the contract period was set at34 weeks for a completion in April 2001. A simplifiedprogramme is shown in Fig. 2.
2. GROUNDWORKS
During the tender stage Pell Frischmann looked at a number ofrefinements to the tender design and following the award of thescheme undertook a full value engineering exercise in conjunction with the contractor, Dean & Dyball. The originaldesign called for steel H-piles under the bridge abutment areasadjacent to the railway line where limited vertical movement ofthe track was essential. Following a review of the groundconditions and based on previous experience, the team successfully argued that cast-in-situ displacement piles, usedelsewhere under the embankments, could be driven closer tothe tracks without any problem. The tracks were monitoredduring piling operations and level changes of less than 6 mmwere recorded along the affected section.
The ground conditions at the site consist of made groundoverlying up to 19 m of soft alluvial clay. Below this either a2 m layer of firm/stiff clay on mudstone or sandstone bedrockexists. Two types of driven cast-in-situ piles were designed byKeller, 340 and 380 mm in diameter, to cope with the differentloading conditions caused by the bridge and the embankment.These were driven to refusal from the existing ground level. Thepoor ground contributed to rapid pile installation and rates of up to eight piles a day were recorded. The total driven lengthranged between 22 and 24 m. Pile design information is shownin Table 1. Tests confirmed the integrity of the design andindicated a maximum settlement at working load of 6 mm.
A concrete pile cap was originally shown above the H-piles todistribute the loads from thebridge abutments to the piles.By replacing the H-piles withthe driven cast-in-situ piles,but at slightly reduced spa-cing, it was possible to eliminate the pile caps and extendsaving on construction time as well as cost.
3. LOAD TRANSFERMATTRESS AND EMBANKMENTS
The piles were used to support a load transfer mattress,which was constructed fromlayers of stone and geomembrane grids. Enlarged head piles had been shown on the tender drawing but, again drawing on previous experience, Pell Frischmann demonstrated that this design method could be utilised to reduce the depth of the
mattress and it was suggested that this approach be employed at Locking Castle. By casting an enlarged head of 1·1 m diameter at the top of each pile, the distance to the next pile was reduced and thus the span of the geomembranes in the mattress layers was decreased. Given that the arching effect in the mattress relies on an angle of 458 from the pile to the top of the mattress, the depth of stone could be reduced accordingly.
The overall depth of the mattress was reduced from 1500 mm to 900 mm by rationalising the design in this way. This also led to savings in reduced excavation to the original ground level (Fig.
3).Above the mattress the embankment rises to a maximum height of 6·3 m to carriageway level. To reduce the spread of the embankment, the tender design originally indicated faced precast concrete panels to vertical sidewalls. This was amended later in the tender stage to vertical walls of class A red brickwork, forcing a change in the design of the reinforced embankment. The design of the embankment was subcontracted to Tensar, based on a specification developed by Pell Frischmann. Their system comprised uniaxial geogrids laid at varying vertical spacing on compacted granular material. Class 6I/J granular material, in accordance with the Specification for Highway Works1was specified and this made up the bulk of the embankment. The grids were then anchored to dry-laid interlocking concrete blocks forming the near-vertical face of the embankment. A vertical drainage layer separated the 6I/J material from the concrete blocks. Ties were installed between the joints in the concrete blocks and the class A brickwork facing was constructed in front. Fig. 4shows the embankment crosssection.
The design of the embank-ment relies on the density of the compacted product being structure. This does not reduce the design life of the structure which was set at the standard 120 years. Difficul- ties with this method of construction are well known and include accounting for differential settlement, increased hogging moments at the ends of the beams and congestion of steel in the small areas between the beams. Sufficient structural strength is inbuilt to counteract the stresses of one abutment moving relative to the other. The design was also restricted by the need to keep the same depth of beam that had been identified on the tender drawings. Increas- ing the beams from a Y3 to a Y4 would have simplified the design but would have the penalty of higher embankments, larger pile and bridge loads, more imported material at a consistent value. To facilitate this, Dean & Dyball sourced 40 mm scalpings from Tarmac aggregates which not only consistently met the 6I/J grading but were also suitable for use in the load transfer mattress. In addition, a permanent materials testing presence was kept on site while the embankments were being constructed. The material was very easy to compact, requiring no more than a 1·5 t vibrating steel roller, and, due to its nature, was very suitable for laying in the generally wetconditions that prevailed at the time. All tests showed tha tminimum compaction of 94% was being achieved and the rate of rise of the embankment exceeded the contractors’expectations.
4. BRIDGE AND ABUTMENTS
The bridge deck consisted of prestressed Y3 precast concrete beams and an in situ reinforced concrete slab spanning 20 mover the railway lines. Figs 5 and 6 show the long- and crosssection of the bridge. The beams were supported on bankseats founded on the reinforced embankments. The narrow nature of the embankments was accentuated at the bankseat area sand it was soon obvious that these were too narrow to avoidresting the structure on the concrete block sidewalls of theembankments. To overcome this, the embankments werewidened locally in the vicinity of the abutments to enable thebankseat to sit wholly on the embankment (Fig. 7). As this change was too large to hide, a feature was made of the widened area by the use of strong right angles in the brickwork and pre-cast concrete (PCC) flagstones laid around the top of the brick wall adjacent to the abutments. The final layout gave added effect and accentuated the bridge and its approaches.
Once placed, the PCC beams were cast into each bankseat by the addition of an integral endwall. This eliminated the need for bearings and movement joints, thus creating an integral and steeper gradients on the approach roads. Pressure to keep the deck construction as shallow as possible came also from the discovery that the original tender drawings had not allowed for a deck crossfall to shed water. This raised the southernembankment 150 mm higher than anticipated.
The design was further complicated by the requirement to accommodate services under the bridge deck, between the beams, and through the integral end wall. These services were a 250 mm diameter water main (through a 350 mm diameter duct), an HV electric cable and a four-way BT duct. The loss of section was overcome by agreement to run the electric cable over the top of the deck, rather than below it, as it was not
physically possible to bring it through the identified location on the tender drawings. The loss of available wall section led to the requirement for smaller numbers of, but larger diameter,  bars fitted around the holes through the endwalls. This is turn made the detailing and fitting of these bars one of the trickiest elements of the job.
Although generally fixed by the layout of the overall scheme, the vertical road alignment was redesigned to accommodate the change in alignment of the bridge deck. This led to an increased gradient on the southern embankment but also had a knock-on effect on the loading of the bridge. To provide a reasonable rollover across the deck from the steep gradients on either side, the depth of surfacing increased to over 300 mm at its deepest point. This greater loading increased the amount of prestressing in the PCC beams.
At an early stage in the contract, Dean & Dyball had focused onthe placing of beams as a critical phase of the scheme,especially as the work was to be undertaken in January. Toaccelerate the placing of permanent formwork between the beams, the contractor requested that the edge beams bedesigned to include inserts to support the temporary handrails.
These were cast in at a depth such that they would be hidden in the final scheme by tails on the high containment precast P6parapet across the bridge. The temporary handrails were fitted to the edge beams prior to placement (Fig. 8). This enabled the contractor to start placing permanent formwork before all the PCC beams had been laid. This approach reduced the time of track possession, with the eleven beams and permanent formwork all installed within five hours.
5. APPROACH EMBANKMENT PARAPETS
Standard parapets of type P2 were designed to protect the edges of the approach embankments and the support for these presented the team with a considerable challenge. Originally shown as in situ reinforced concrete, it soon became clear that this solution would provide the contractor with a significant health and safety problem. Casting edge beams 6 m above the ground was potentially dangerous, required a lot of scaffolding mand permanent formwork, and would add weeks to the tight construction programme.
To overcome this, the contractor proposed using precast concrete parapet supports in lieu of in situ. However, due to the tight centreline radii on the bridge approaches (50 m radius), the length of each PCC section would need to be limited to avoid a ‘threepenny piece’ appearance. This created its ownproblems when design calculations showed that accidental loadings on the parapet would not be restrained by the use of small discrete PCC units.
A compromise solution consisting of a precast edge piece and an in situ section under the footway/cycleway construction was eventually developed to overcome the problems. To achieve the desired effect, the precast edge beam would need to be of sufficient size and shape to rest on the brick/block edging of the embankment without being unstable. In addition, the sides of each unit would need to be slightly tapered to accommodate the radii of the bends, and the parapet support post bolt cradle would need to be pre-installed at the correct spacing. Team work between the designer and contractor led to a reduction in the number of panel types from 30 to 17, ranging in length from a maximum of 3·65 m to a minimum of 1·98 m, while keeping the parapet posts at a constant spacing along the main length of the embankments (Fig. 9).
The precast units were tied together by means of an in situ element. This comprised a slab extending the entire length of the embankments from the bankseats to the end of the parapet units. The slab was cast continuously, without joints, so that it acted as a beam. The slab was designed with a toe, which, together with friction, counteracts the lateral forces from accidental loading of the parapet posts while the overturning forces of any impact are countered by the weight and cantilever effect of the continuous slab. The P2 support sections were placed and levelled to give apleasing sweep and elevation to the bridge while a tail on the PCC unit was included to hide the top of the brickwork wall, ensuring a neat appearance was achieved.
6. TEAM WORKIN
One of the most pleasing aspects of the scheme was the goodworking relationship that was maintained between all parties. Although working under the General Conditions of Contract for Building and Civil Engineering GC/works/1,2the contractor was keen to espouse the ethics of partnering. Regular meetingsbetween the contractor, designer, client’s engineer and client’s architect took place to keep all parties informed of the latest developments and to deal with concerns before they became a distraction. Communications, channelled through the contractor, between interested third parties, such as Railtrack and NSDC, were also well managed, which ensured that possessions were granted as requested and adoption requirements were dealt with swiftly. This approach was key to meeting the tight construction deadline and in dealing with the minor omissions found in the tender design in a professional manner. It is a credit to the contractor that this was maintained throughout the period of the contract.
7. SUMMARY
Locking Castle Bridge is based on a modern and innovative design which, along with its appearance (Fig. 10), benefits the local environment and provides a focal point for the new residential development. The creation of a park adjacent to the southern embankment will enhance the status and appearance of the bridge in years to come and provide a sense of pride forall those involved in the construction of Locking Castle Bridge.
REFERENCES
1.     Specification for Highway Works. In: Manual of ContractDocument for Highway Works. Highways Agency. TheStationery Office, 1993.
2.    GC/Works/1: Conditions of Contract for Major Building and Civil Engineering Works. Single Stage Design & Build, The Stationery Office, 1998
 
原文翻譯:
英國鎖城大橋
鎖城大橋是橫跨住宅發(fā)展區(qū)的鐵路橋梁。由于工程施工受到周圍建筑與地形的限制,該工程采取加固橋臺、橋墩與橋面的剛構結構,以及預制欄桿等方法提高了大橋的使用安全程度,并降低了大橋建造與維護的費用。因此,城堡大橋科學的設計方案使工程成本降到最低。
一、       引言
本文描述的是在受限制地區(qū)用最小的費用修建一座鐵路橋梁使之成為開放的住宅發(fā)展區(qū)。鎖城地區(qū)是位于住宅發(fā)展十分緊張的韋斯頓超
圖1  鎖城大橋位置遠景
馬雷的東部。監(jiān)督橋梁建設的客戶是城堡建設有限公司,它由二大房建者組成。該區(qū)的規(guī)劃局是北盛捷區(qū)議會(NSDC)。該發(fā)展地區(qū)被分為布里斯托爾和?巳。規(guī)劃條件規(guī)定,直到建成這條橫跨的鐵路大橋為止,該地區(qū)南部區(qū)域不可能適應居住?梢婃i城大橋的建成對該地區(qū)發(fā)展的重要性。
發(fā)展地區(qū)位于薩默塞特的邊緣,這個地區(qū)地形十分的惡劣,該范圍位于韋斯頓以北和A321飛機雙程雙線分隔線的南面,F在只有一條鄉(xiāng)下公路,是南部區(qū)域的唯一通道。該地區(qū)是交通預期不適合住宅增加的區(qū)域。
由于盛捷地區(qū)水平高程的限制,新的鐵路線在橋臺兩邊必須設有高程差。 并且該地區(qū)地形限制,允許正常橫跨的區(qū)域較小,這導致在結構的布局上的一定數量的妥協(xié)。為了整個城堡地區(qū)的發(fā)展, 全

圖2  鎖城大橋地圖上位置
橋限速20公里/時,并考慮區(qū)域范圍內的速度制約。這樣在得到客戶和NSDC的同意后,橋梁采取了最小半徑的方法,這使得橋梁采用了比正常梯度更加陡峭地方法實現高程的跨越。
客戶的工程師、工程顧問、一般設計原則和初步認同原則下(AIP)與NSDC發(fā)出投標文件。
該合同在2000年7月1授予安迪。投標價值1.31億美元,合同期定為34周,到2001年4月完成。
 
 
 
 
 
 
 
 
 
 
 
 
    圖3  橋整體橫斷面
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   圖4  橋體長度          圖5  橋上部結構橫斷面
二、地基
在招標階段佩爾研究了一些優(yōu)化設計和招標后的裁決計劃進行了充分的經濟分析后交付承包商,院長及安迪 。原來設計要求H型

 
 
 
 
 
 
 
圖6  橋面鋪裝
 
鋼樁柱下的橋臺地區(qū)與相鄰鐵路線之間必須是垂直運動。經審查后的地面條件和根據以往的經驗判斷,現澆位移樁,使用其他類似地方的河堤下,可驅動更接近軌道而不會有任何問題。并在受影響區(qū)域進行了監(jiān)測,打樁作業(yè)和水平高程的變化小于要求的6毫米。
在地面下覆蓋厚達19米的軟沖積土。這下面是2米層堅定/硬粘土泥巖或砂巖基石。兩種類型的驅動現澆樁設計了340和380毫
米的大口徑水管,以應付不同載入條件所造成的橋梁和堤壩的不同荷載。 這些有利于樁體的載入。最多可達一天8個樁的記錄?傞L度
驅動介于22和24米之間。試驗證實了完整的設計和表示最多解決在工作負荷為六毫米
一個具體的樁帽負載從橋墩傳遞到樁。 取代H型樁柱與 驅動現澆樁, 但略有減少水,它能使樁帽的荷載延長傳遞到承臺,從而節(jié)約施工時間 以及成本。
三、荷載傳遞,路基
樁被用來抑制端口的負載轉移,這是因為修建時采用了石頭和網膜。 在招標圖紙上顯示了基礎頂部擴大樁,再運用早先經驗, 佩爾指出這個設計方法可能被運用減少墊層的深度,并且把這種方法使用在城堡大橋上。 通過熔鑄一個擴大的部分1.1m在每樁上面,距離到樁下減少了1 m直徑,并且薄膜的間距在墊層的增加因而被減少了。 假設成拱形的作用在承臺依靠角度458從堆到墊層的上面,可能相應地減少石頭的深度。通過合理的設計,墊層的整體深度從1500毫米減少了到900毫米。 這樣減少了挖掘深度并保留了原始的底層。.
墊層路堤上升到最大高度6.3 m的車道高程。為了減少蔓延的路堤,招標設計最初面臨混凝土預制板垂直側壁。這是后來修正的在投標階段用紅磚砌筑的垂直墻壁,迫使改變設計中的鋼筋路堤。路基被分包兩個部分以坦薩為基礎和規(guī)范發(fā)展的佩爾弗里斯赫曼恩路段。其系統(tǒng)組成的單軸土工格柵在不同規(guī)定垂直間隔的壓實顆粒物質。顆粒狀材料,符合高速公路規(guī)范做路堤材料的相關規(guī)定。該網格,掛靠在干燥的混凝土砌塊上形成近垂直的路堤。被垂直排水層分開。在兩者之間安裝了隔水帶,并且在前面修建了磚砌飾面。 圖-4展示基礎的橫斷面
圖7  防撞墻
路堤的設計是依靠緊密的產品的密度結構。這并不會減少橋梁結構的120年的設計使用壽命。此方法的約束結構是眾所周知的, 并且在結算梁末端的負彎矩時作為一個統(tǒng)一體來解決。并且利用墩臺的內力來約束其相對移動。在招標圖紙上還限制了必須要保持同樣的深度。現在 從Y3到Y4進行簡化設計,這樣就會有更高的橋基、更大的樁和橋梁荷載,造成進口的材料損失。院長及安迪在這一共同目標下進行了這項工作。凈厚40毫米的瀝青混凝土不僅滿足材料等級的要求,也適合使用在負荷傳遞的墊層上。此外,一直在現場進行永久材料的測試,而在興建河堤時,該材料很容易壓實,按要求使用1.5噸的振動壓路機碾壓,而且,就其性質而言,非常適合埋設在潮濕的條件。所有的測試結果顯示, 最低的壓實度在94 %以上,壓實度遠遠超過承包商期望。
四、橋梁和橋墩
橋面包括預制預應力混凝土梁和一塊跨度20m的現澆鋼筋混凝土平板。圖4和5顯示橋梁的長度和橫斷面。 在加強的橋臺建立支撐梁。在支撐梁區(qū)域凸顯了橋臺狹窄的特點,并且這些太狹窄的橋臺

 
 
 
 
 
 
 
圖8  擋土墻
不能避免的退出工作結構,并對混凝土砌塊側壁的河堤產生壓力。為了克服這個困難,把河堤的擋土墻在橋臺附近擴大,并使之成為完全擋土墻 (圖8)。 因為這變動太大以至于不能掩藏,在磚墻的上面放置的磚砌和預制混凝土做了加寬的區(qū)域,并在橋臺附近形成了壩肩。最后的布局給橋梁帶來了增值效應并豐富了橋梁和其施工方法。
一旦澆注了混凝土,整個橋面將形成一個整體。 這方法消除了梁與支撐之間的轉動,因此,使橋面形成了一個統(tǒng)一的更加陡峭坡度。為了保持橋面產生壓力保持一樣,使橋面出現橫向的排水,這是招標圖紙不允許的。 這就提出了一個南部路基高于預期150毫米。
設計要求在梁和橋面板之間容納一些復雜的服務設備。這些設備是一條250毫米直徑總水管(通過一條350毫米直徑輸送管), HV電纜和一條四種方式的BT輸送管。在招標圖紙上看這些服務設備是在橋梁之間缺失的部分通過,而不是在它的下面通過。這些可利用的部分損失能夠使橋梁的自重更小、結構減輕,而且橋梁的截面尺寸更大,這些臨時的設施在孔中通過。因此,要求作出詳細的安裝說明,這又是一個非常棘手的工作。
橋梁的布局方案是一個整體的固定結構。并且,重新設計成了垂直路線,以適應橋面的變化。這就導致了南部橋臺的升高,從而,橋面的坡度增加。因此,對上面的橋梁產生了連鎖反應。為提供合理的橋面跨越坡度,在橋南部的樁相應的增長,在增長最多的地方增加深度超過300毫米。這要求在預應力混凝土中增加更大預應力。
在早期階段的合同中,院長及安迪把梁的施工作為一個關鍵階段, 尤其施工是在1月份進行。承包商要求在梁之間快速安裝永久模板,并且,要求在邊梁設計時插入臨時扶手欄桿。
澆注了橫跨橋梁護墻后,能夠掩蓋P6欄桿末端。在安裝邊緣梁之前應先安裝臨時扶手欄桿。在安裝所有的混凝土梁之前,承包商先安置永久模板。這種安裝方法安裝11根梁和所有的永久建筑僅僅需要5小時,大大的節(jié)省了施工周期。
五、護墻
標準型的P2護墻的目的是保護的邊緣河堤。因此,對該小組提出了相當大的挑戰(zhàn)。必須在原先的位置澆注鋼筋混凝土,承包商對這種解決方案提出了健康與安全問題,因為在地面上澆注6m的邊緣梁是十分危險的,必須要用到更多的腳手架和永久模板,并且,施工將延長幾個星期,工期將更加緊張。
    為此,承包商建議使用預制混凝土欄桿來替代在原處澆注混凝土。然而,由于橋梁采用的是最小半徑,所以每個混凝土梁的長度受到限制,以避免出現外觀問題。并且計算表明混凝土欄桿會受到使用限制。
另外一種折衷的解決辦法包括一個預制件和邊緣現澆的行人/自行車道建設,最終克服了這些問題。為了實現理想的效果,邊梁的預制需要的足夠的大小和形狀的磚塊,以確保邊緣的路堤穩(wěn)定。此外,雙方每個單位將需要略錐形,以適應半徑的彎道,并且護墻后螺栓支持搖籃要預先安裝在正確的間距上。由于設計師和承包商通力合作,盤區(qū)類型的數量從30減少到17,排列在長度從最多3.65 m減少到最小限度1.98 m,并保留欄桿位置恒定間距沿堤防的主要長度(如圖9)。
預制的構件通過現場澆注在一起,形成了一個整體。同時連欄桿和擴大的路堤也澆注在一起。把橋面板澆注在一起,使之形成梁。并且橋面板做了腳趾形設計,利用其摩擦力來抵抗欄桿的偶然荷載,用連續(xù)的橋面板和懸臂式結構抵抗外部的對 橋面的扭轉和傾覆力。
P2支持部分被做成水平并且與橋梁完美的組合在一起。而末端被混凝土掩蓋保證了外觀的整潔。
六、運作
在整個計劃中最值得欣慰的是能夠很好的維護各個方面的關系。大家在工程合同約定下一起工作,在出現矛盾之前,舉行定期會議時告知承包商、設計師、客戶的工程師和客戶的建筑師工程之間相互通告事情的最新事態(tài)發(fā)展和處理的意見。并且在感興趣
圖9  鎖城大橋
 
的方面打開信息交換的通道適時的通信,例如處理好鐵路軌道等,并按要求保證資金適時到位。在遇到工程最后期限緊張時或發(fā)現設計圖紙有小遺漏時要以專業(yè)的方式進行溝通。這事成為承包商在整個合同期間維護信用的關鍵。
七、摘要
鎖城大橋是集現代和創(chuàng)新于一體的設計(圖9)。加上其美麗的外觀,不僅美化了當地環(huán)境。還增加了外界聯(lián)系。更有利于新住宅的發(fā)展。并且在橋的南部還建立了一個公園,這將提高大橋的地位和整體的外觀。在今后幾年里,鎖城大橋將是所有參與建造者的自豪。
參考文獻
公路工程規(guī)范             速公路局辦公室       1993年
建筑與土木工程規(guī)范        建造與設計辦公室    1998年
 
 
 
 
 
 
 
 
 
 
 
 
參考資料
《建筑結構抗震設計》,東南編著、清華主審。,1998
《混凝土結構》上冊,2,天津 
河 海 大 學
畢業(yè)設計說明
 
 
作   者:   李良   
學  號:AHG2009140
專   業(yè): 土木工程               
題   目: 溧陽職業(yè)學校一號教學樓設計
             
 
指導者:                           
 
      
 
評閱者:                            
 
 
 
     2011 年 5 月   南 京

目錄
2011   年  5月   南 京... 1
前   言... 1
內容摘要... 2
第一章   工程概況... 4
1.1 工程總體概況..... 4
1.2 設計資料..... 4
1.3 承重方案選擇..... 4
1.4 結構布置..... 5
第二章   確定計算簡圖... 6
2.1 框架梁截面尺寸..... 6
2.2 框架柱截面尺寸..... 6
2.3 框架結構計算簡圖..... 6
第三章       荷載代表值... 7
3.1荷載統(tǒng)計..... 7
3.2 荷載作用計算..... 9
3.3 地震作用下荷載計算..... 12
第四章   框架內力計算... 17
4.1 恒載作用下的框架內力..... 17
4.2 活載作用下的框架內力..... 24
4.3地震作用下橫向框架的內力計算..... 28
第五章   框架內力組合... 32
5.1 彎矩調幅..... 32
5.2橫向框架梁內力組合.... 33
5.3橫向框架柱內力組合.... 36
第六章   框架梁、柱截面設計... 40
6.1框架梁截面設計..... 40
6.2 框架柱截面設計..... 46
第七章  樓梯結構設計... 48
7.1 樓梯板計算..... 48
7.2 平臺板計算..... 49
7.3 平臺梁計算..... 50
第八章  現澆樓蓋設計... 53
8.1現澆樓蓋設計..... 54
第九章  基礎設計... 56
9.1 荷載計算..... 57
9.2 確定基礎底面積..... 58
9.3 基礎結構設計(混凝土采用C20)..... 59
第十章  科技資料翻譯... 64
參考資料... 83
 
 

前   言
畢業(yè)設計是本科教育培養(yǎng)目標實現的重要階段,是畢業(yè)前的綜合學習階段,是深化、拓寬、綜合教和學的重要過程,是對期間所學專業(yè)理論知識的全面總結。
本組畢業(yè)設計題目為《溧陽職業(yè)學校一號教學樓框架結構設計》。在畢業(yè)設計前期,我溫習了《結構力學》、《鋼筋混凝土》、《建筑結構抗震設計》等知識,并借閱了《抗震規(guī)范》、《混凝土規(guī)范》、《荷載規(guī)范》等規(guī)范。在畢業(yè)設計中期,我通過所學的基本理論、專業(yè)知識和基本技能進行建筑、結構設計。在設計期間,本組在校成員齊心協(xié)力、分工合作,發(fā)揮了大家的團隊精神。在設計后期,主要進行設計手稿的電腦輸入,并得到老師的審批和指正,使我圓滿的完成了任務,在此表示衷心的感謝。
畢業(yè)設計的三個月里,在指導老師的幫助下,經過資料查閱、設計計算、論文撰寫以及外文的翻譯,加深了對新規(guī)范、規(guī)程、手冊等相關內容的理解。鞏固了專業(yè)知識、提高了綜合分析、解決問題的能力。在進行內力組合的計算時,進一步了解了Excel。在繪圖時熟練掌握了AutoCAD,以上所有這些從不同方面達到了畢業(yè)設計的目的與要求。
框架結構設計的計算工作量很大,在計算過程中以手算為主,輔以一些計算軟件的校正。由于自己水平有限,難免有不妥和疏忽之處,敬請各位老師批評指正。
                                           2011.5.8
內容摘要
本設計主要進行了結構方案中橫向框架3軸框架的抗震設計。在確定框架布局之后,先進行了層間荷載代表值的計算,接著利用頂點位移法求出自震周期,進而按底部剪力法計算水平地震荷載作用下大小,進而求出在水平荷載作用下的結構內力(彎矩、剪力、軸力)。接著計算豎向荷載(恒載及活荷載)作用下的結構內力,。 是找出最不利的一組或幾組內力組合。 選取最安全的結果計算配筋并繪圖。此外還進行了結構方案中的室內樓梯的設計。完成了平臺板,梯段板,平臺梁等構件的內力和配筋計算及施工圖繪制。
關鍵詞: 框架    結構設計    抗震設計            
Abstract
   The purpose of the design is to do the anti-seismic design in the longitudinal frames of axis 3. When the directions of the frames is determined, firstly the weight of each floor is calculated .Then the vibrate cycle is calculated by utilizing the peak-displacement method, then making the amount of the horizontal seismic force can be got by way of the bottom-shear force method. The seismic force can be assigned according to the shearing stiffness of the frames of the different axis. Then the internal force (bending moment, shearing force and axial force ) in the structure under the horizontal loads can be easily calculated. After the determination of the internal force under the dead and live loads, the combination of internal force can be made by using the Excel software, whose purpose is to find one or several sets of the most adverse internal force of the wall limbs and the coterminous girders, which will be the basis of protracting the reinforcing drawings of the components. The design of the stairs is also be approached by calculating the internal force and reinforcing such components as landing slab, step board and landing girder whose shop drawings are completed in the end.
Keywords :  frames,  structural design,  anti-seismic design
 
 
 
 
 
 
 
 
 
 
 
 
第一章   工程概況
1.1 工程總體概況
江蘇溧陽職業(yè)學校一號樓為三層鋼筋混凝土框架結構體系,建筑面積約3000 m2 ,層高3.6 m,室內外高差為0.45m,屋面為上人屋面,采用有組織排水。樓蓋及屋蓋用現澆鋼筋混凝土板。建筑設計使用年限50年。
1.2 設計資料
(1)建筑構造
屋面做法:SBS改性瀝青防水卷材屋面,屋面保溫材料選用聚苯板
樓面作法:水磨石樓面,
內外墻作法:內外墻均選用粉煤灰輕渣空心砌塊(390mm×190mm×190mm)
(2)地質資料
層次 土類 平均厚度
(m)
承載力特征值fak(kPa) 重度
(KN/m3)
土層剪切波速(m/s)
1 雜填土 0.8 90 16.5  
2 素填土 0.9 100 16.0  
3 粉塵沙土 6.2 160 19.2 200
4 粉土 5.7 140 19.0 180
5 粉質粘土 7.9 225 19.4 350
注:1、場地土覆蓋厚度(地面至剪切波速大于500m/s的土層距離)為66m。
    2、常年地下水位在地表下2.0m。
(3)基本雪壓:0.5kN/m2
(4)地震資料:設防烈度為7度,設計基本地震加速度為0.1g,設計地震為第一組。
(5)建筑等級:結構安全等級二級,耐火等級Ⅱ級。
(6)材料:混凝土強度等級上部結構采用C25,基礎采用C20;梁柱及基礎縱向受力鋼筋采用HRB335級鋼筋,其余鋼筋均采用HPB235級鋼筋,鋼筋最大直徑不超過25mm。
(7)教學樓樓面活載,查《建筑結構荷載規(guī)范》(GB 50009–2001),確定樓面活載標準值為2 kN/m2;上人屋面活荷載標準值 2.0 kN/m2
1.3 承重方案選擇
豎向荷載的傳力途徑:樓板的均布活載和恒載經次梁間接或直接傳至主梁,再由主梁傳至框架柱,最后傳至地基。根據以上樓蓋的平面布置及豎向荷載的傳力途徑,本教學樓框架的承重方案為橫向框架承重方案。

1.4 結構布置
 

 

第二章   確定計算簡圖
2.1 框架梁截面尺寸
1.主梁高 h=(1/12~1/8)l , b = (1/2~1/3)h
橫向:AB、CD跨:l=7500mm。h=625~937.5mm,取h=700mm ,b =300mm。
BC跨:    l=3000mm。h=250~375mm,取h=400mm ,b =300mm。
縱向:l=8100mm。h=675~1012.5mm,取h=700mm ,b =300mm。
(3)次梁: h=(1/18~1/15)l
          h=500 mm  b=250 mm
2.2 框架柱截面尺寸
本工程為現澆鋼筋混凝土結構,7度設防,高度<30m,抗震等級為二級,取底層柱估算柱尺寸,根據經驗荷載為14kN/m2:
中柱負荷面積(3/2+7.5/2)×8.1=42.525m2。
豎向荷載產生的軸力估計值:NV=14×42.525×3=1786.05 kN。
軸力增大系數,中柱1.1,邊柱1.2,N=1.1×1786.05=1964.66kN。
Ac≥N/uNfc=1964.66×103/(0.8×11.9)=206371.32mm2。
為安全起見,取柱截面尺寸為500mm×500mm。
2.3 框架結構計算簡圖

 
 
第三章  荷載代表值
3.1荷載統(tǒng)計
一、屋面(上人)(蘇J01-2005  21+A/7)
(1)恒荷載
25厚1:2.5水泥砂漿保護層,表面抹光壓平:    0.025×25=0.63kN/m2
隔離層:(SBS改性瀝青柔性卷):                0.4kN/m2
高分子卷材(一層):                            0.05 kN/m2
20厚1:3水泥砂漿找平層:                    0.02×20=0.4kN/m2
120厚鋼筋混凝土屋面板:                    0.12×25=3.0kN/m2
20厚天棚石灰砂漿抹灰:                     0.02×17=0.34kN/m2   
合計:                                      5.93kN/m2
(2)活荷載和雪荷載
上人屋面均布活荷載:                       2.0kN/m2
(基本雪壓0.5KN/m2)                                                  
合計:                                     2.0 KN/m2
二、樓面(蘇J01-2005  5/3)
(1)恒荷載
1.15厚1:2白水泥白石子(或摻有色石子)磨光打蠟0.27 KN/m2
2.刷素水泥漿結合層一道
20厚1:3水泥砂漿找平層                     0.02×20=0.4kN/m2
120厚現澆鋼筋混凝土板                      25×0.12=3.0kN/m2
20厚天棚石灰砂漿抹灰:                     0.02×17=0.34kN/m2             
樓面恒載:                                          4.01kN/m2
(2)活荷載
樓面均布活荷載:                            2.0kN/m2                                    
走廊:                                      2.5kN/m2
三、內墻面(蘇J01-2005  9/5)
刷乳膠漆
5厚1:0.3:3水泥石灰膏砂漿粉面               0.005×12=0.06kN/m2
12厚1:1:6水泥石灰膏砂漿打抵                0.012×17=0.204kN/m2
刷界面處理劑一道
粉煤灰輕渣空心砌塊                  7×0.19=1.33kN/m2                                        
合計:                                     1.594kN/m2
四、外墻面(蘇J01-2005  22/6)
外墻涂料飾面
聚合物砂漿
保溫材料
3厚專用膠粘劑
20厚1:3水泥砂漿找平層                  0.020×20=0.4kN/m2            
12厚1:3水泥砂漿打底掃毛                0.012×20=0.24kN/m2
刷界面劑處理一道                                
粉煤灰輕渣空心砌塊                         7×0.19=1.33kN/m2
合計                                                1.97kN/m2
表3-1  2-3層墻重
位置 墻重kN/m2 梁高m 鋼框玻璃窗kN/m2 窗高m 層高m 均布墻重kN/m 跨度m 自重kN 總重kN
外縱墻 1.97 0.4 0.45 2 3.6 3.264 54.44 177.69 641.58
內縱墻 1.594 0.4     3.6 5.101 54.44 277.7
外橫墻 1.97 0.7     3.6 5.713 18 102.83
內橫墻 1.594 0.7     3.6 4.631 18 83.36
 
表3-2   底層墻重
位置 墻重kN/m2 梁高m 鋼框玻璃窗kN/m2 窗高m 層高m 均布墻重kN/m 跨度m 自重kN 總重kN
外縱墻 1.97 0.4 0.45 2.0 4.55 5.136 54.44 279.6 886.72
內縱墻 1.594 0.4     4.55 6.615 54.44 360.12
外橫墻 1.97 0.7     4.55 7.585 18 136.53
內橫墻 1.594 0.7     4.55 6.137 18 110.47
五、主梁荷載
    縱軸梁: 0.7×0.3×25=5.25kN/m
    橫軸梁: AB,CD跨自重0.7 ×0.3×25=5.25kN/m
             粉刷2×(0.7-0.12)×0.02×17=0.39kN/m
                                    5.64kN/m
BC跨自重   0.3 ×0.4×25=3kN/m
             粉刷   2×(0.4-0.12)×0.02×17=0.19kN/m
                                     3.19kN/m
次梁荷載
              自重0.5 ×0.25×25=3.125kN/m
              粉刷2×(0.5-0.12)×0.02×17=0.129kN/m
                                    3.254kN/m
六、柱荷載
2-3層     0.5×0.5×3.6×25=22.5kN
底層      0.5×0.5×4.55×25=28.44kN
七、梁自重
縱梁自重    5.25×54.44×4=1143.24kN
橫向AB,CD   5.25×7.5×2×7=551.25 kN
     BC      3×3×7=63 kN
八、柱自重
  2-3層每層柱重 22.5×32=720kN
    底層          28.44×32=910.1kN
九、活荷載統(tǒng)計
     上人屋面活荷載標準值                          2.0 kN/m2
     樓面,衛(wèi)生間活荷載標準值                      2.0 kN/m2
     走廊,樓梯                                    2.5 kN/m2
     屋面雪荷載                     Sk=us0=1.0×0.5=0.5 kN/m2
3.2 荷載作用計算
一、屋面荷載
    1.屋面恒荷載:      5.93kN/m2
      梁自重 AB,CD跨: 5.64kN/m
               BC跨: 3.19kN/m
作用在頂層框架梁上的線荷載標準值為;
梁自重 g5AB1=g5CD1=5.64kN/m        g5BC1=3.19kN/m
板傳來的荷載g5AB2= g5CD2=5.93×8.1=48.0kN/m
            g5BC2=3.19×3=9.57kN/m
2.活載
作用在頂層框架梁上的線活載標準值為;
            g5AB= g5CD=2×8.1=16.2kN/m
            g5BC=2×3=6kN/m
二、樓面荷載
    1.樓面荷載標準值:       4.01kN/m2
      邊跨(AB,CD)框架自重:5.64kN/m
      中跨(BC)             3.19kN/m
     梁自重       gAB1= gCD1=5.6kN/m  gBC1=3.19kN/m
     板傳來荷載   gAB2= gCD2=4.01×8.1=32.48kN/m
                  gBC2=4.01×3=12.03kN/m
    2.活載        gAB= gCD=2×8.1=16.2kN/m
                  gBC=2.5×3=7.5kN/m
三、屋面框架節(jié)點集中荷載標準值;
    1.恒載
  邊跨連系梁自重          0.7×0.3×8.1×25=42.53kN
      粉刷          2×(0.7-0.12)×0.02×8.1×17=3.19kN
      連系梁傳來屋面自重 0.5×8.1×0.5×8.1×5.93=97.27kN
      頂層邊節(jié)點集中荷載                G5A=G5D=142.99kN
     
      中柱連系梁自重              0.7×0.3×8.1×25=42.53kN
      粉刷                2×(0.7-0.1)×0.02×8.1×17=3.19kN
      連系梁傳來屋面板自重    0.5×8.1×0.5×8.1×5.93=97.27kN
                     0.5×(8.1+8.1-3)×3/2×5.93=58.71kN
      頂層中節(jié)點荷載                       G5B=G5C=201.67kN
    2.活載
             Q5A=Q5D=0.5×8.1×0.5×8.1×2=32.81 kN
Q5B=Q5C=32.81+0.5×(8.1+8.1-3)×3/2×2=52.61kN
四、樓面框架節(jié)點集中荷載標準值
1.恒載
  邊梁連系梁自重    0.7×0.3×8.1×25=42.53kN
      粉刷               2×(0.7-0.1)×0.02×8.1×17=3.19kN
      連系梁傳來樓面荷載 0.5×8.1×0.5×8.1×4.01=65.77kN
      縱向梁上填充墻  8.1×3.264=26.44kN
      柱自重                      22.5kN          28.44kN
      中間層邊節(jié)點集中荷載       160.43kN      底層166.37kN
 
  中柱連系梁自重             0.7×0.3×8.1×25=42.53kN
      粉刷                  2×(0.7-0.1)×0.02×8.1×17=3.19kN
連系梁傳來樓面自重         0.5×8.1×0.5×8.1×4.01=65.77kN
                        0.5×(8.1+8.1-3)×3/2×4.01=48.72kN
內縱向梁上填充墻                    8.1×5.101=41.32kN
柱自重                     22.5kN          28.44kN
     中間層中節(jié)點集中荷載       224.03kN       底層229.97kN
   2.活載
              QA=QD=0.5×8.1×0.5×8.1×2=32.81kN
              Q5B=Q5C=32.81+0.5×(8.1+8.1-3)×3/2×2.5=57.56kN

圖3-1 恒載作用下計算簡圖
 
 

圖3-2 活載作用下計算簡圖
 3.3 地震作用下荷載計算
1.建筑物總重力荷載代表值Gi的計算
a.集中于屋蓋處的質點重力荷載代表值G 3
50%雪載:                0.5×0.5×18×54.44 = 244.8kN
屋面恒載:                   5.93×18×54.44 = 5810.93kN
橫梁:                (5.64×7.5×2+3.19×3)×7= 659.19kN
縱梁:                          5.25×54.44×4=1143.24kN
柱重:                             0.5×32×22.5= 360kN
墻自身重(各層一半)              641.58/2=320.79kN
G 3=8538.91kN
b.集中于樓面處的質點重力荷載代表值G 2
50%樓面活荷載: 0.5×(2×7.5×54.44×2+2.5×3×54.44) = 1020.75kN
樓面恒載:                        4.01×18×54.44= 3929.48 kN
梁自重:                                         1802.43kN
墻自重(上下各半層):                             641.58kN
柱重(上下各半層):                                720kN
G 2-4=8114.24kN
c.集中于底層樓面處的質點重力荷載代表值G 1
50%樓面活荷載: 0.5×(2×7.5×54.44×2+2.5×3×54.44) = 1020.75kN
樓面恒載:                        4.01×18×54.44= 3929.48kN
梁自重:                                          1802.43kN
墻自重(上下各半層):              641.58/2+886.72 /2=764.15kN
柱重(上下各半層):                 720/2+910.1/2=815.05kN
G 1=8331.86kN
結構等效總重力荷載:  

圖3-4 各質點的重力荷載代表值
2.地震作用計算:
(1)框架柱的抗側移剛度
在計算梁、柱線剛度時,應考慮樓蓋對框架梁的影響,在現澆樓蓋中,中框架梁的抗彎慣性矩取 I = 2I0;邊框架梁取 I = 1.5I0;在裝配整體式樓蓋中,中框架梁的抗彎慣性矩取I = 1.5I0;邊框架梁取I = 1.2I0,I0為框架梁按矩形截面計算的截面慣性矩。
表3-4   橫梁、柱線剛度
桿件 截面尺寸 Ec
(kN/mm2)
I0
(mm4)
I
(mm4)
L
(mm)

(kN﹒mm)
相對剛度
B
(mm)
H
(mm)
邊框架梁 300 700 30 8.58×109 12.87×109 7500 5.15×107 1
邊框架梁 300 400 30 1.6×109 2.4×109 3000 2.4×107 0.466
中框架梁 300 700 30 8.58×109 17.16×109 7500 6.86×107 1.332
中框架梁 300 400 30 1.6×109 3.2×109 3000 3.2×107 0.621
底層框架柱 500 500 30 5.21×109 5.21×109 4550 3.44×107 0.668
中層框架柱 500 500 30 5.21×109 5.21×109 3600 4.34×107 0.843
 
每層框架柱總的抗側移剛度見表3-5:
表3-5  框架柱橫向側移剛度D值
 項目
 
    根數 
柱類型及截面
二至三層 邊框架邊柱(500×500) 1.19 0.37 14.87 4
邊框架中柱(500×500) 1.74 0.47 18.89 4
中框架邊柱(500×500) 1.58 0.44 17.68 10
中框架中柱(500×500) 2.32 0.54 21.7 10
底層 邊框架邊柱(500×500) 1.5 0.57 11.37 4
邊框架中柱(500×500) 2.19 0.64 12.76 4
中框架邊柱(500×500) 1.99 0.62 12.36 10
中框架中柱(500×500) 2.92 0.7 13.96 10
ic:梁的線剛度,iz:柱的線剛度。
底層:    ∑D = 11.37×4+12.76×4+12.36×10+13.96×10=359.72
kN/mm
二~三層:∑D = 4×(14.87+18.89)+(17.68+21.7)×10= 528.84kN/mm
(2)框架自振周期的計算
表3-6  框架頂點假想水平位移Δ計算表
Gi(kN) ∑Gi(kN) ∑D(kN/mm) δ=∑Gi/∑D 總位移Δ(mm)
3 8538.91 8538.91 528.84 16.15 117.1
2 8114.24 16653.15 528.84 31.49 100.96
1 8331.86 24985.01 359.72 69.46 69.46
:(考慮結構非承重磚墻影響的折減系數,對于框架取0.6)
則自振周期為: 
(3)地震作用計算
根據本工程設防烈度7、Ⅱ類場地土,設計地震分組為第一組,查《抗震規(guī)范》特征周期Tg = 0.35 sec,αmax = 0.08
由于Tg = T1

結構等效總重力荷載:  
因為T1<1.4Tg
所以無需在此結構頂部附加集中水平地震作用。

各樓層的地震作用和地震剪力標準值由表3-7計算列出。
表3-7   樓層地震作用和地震剪力標準值計算表
Hi(m) Gi(kN) GiHi Fi=GiHiFEk/(∑GkHk) 樓層剪力Vi(kN)
3 11.75 8538.91 100332.19 834.07 834.07
2 8.15 8114.24 66131.06 549.76 1383.83
1 4.55 8331.86 37909.96 315.15 1698.98
(4)多遇水平地震作用下位移驗算
水平地震作用下框架結構的層間位移(△u)i和頂點位移u i分別按下列公式計算:
(△u)i = Vi/∑D ij                                                  (3-1)
u i=∑(△u)k                                 (3-2)
各層的層間彈性位移角θe=(△u)i/hi,根據《建筑抗震設計規(guī)范》,考慮磚填充墻抗側力作用的框架,層間彈性位移角限值[θe]<1/550。
計算過程如表3-8所示:
表3-8 橫向水平地震作用下的位移驗算
樓層 hi (mm) Vi (kN) ∑Di
(kN/mm)
(Δue)
(mm)
ui
(mm)
  [ ]
3600 834.07 359.72 2.32 9.38 0.00064 1/550=
0.00182
3600 1383.83 359.72 3.85 7.06 0.00107
4550 1698.98 528.84 3.21 3.21 0.00071
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
第四章   框架內力計算
4.1 恒載作用下的框架內力
1.彎矩分配系數
 計算彎矩分配系數

頂層:
節(jié)點A3      

   節(jié)點B3      
            
 
 
 
節(jié)點A2    
 

 
節(jié)點B2   
       
 

            
 

       
底層:
節(jié)點A1    
                                         
 
             
 
                                          
   節(jié)點B1     
                
                                               
 
               
                                               
 

               
 
2.均布等效荷載

頂層邊跨
頂層中跨
中間層邊跨
中間層中跨
     
表4-1均布等效荷載(單位:kN/m)
位置 AB梁 BC梁 CD梁
3 23.38 9.08 23.38
2 23.38 9.08 23.38
1 23.38 9.08 23.38
3.固端彎矩
頂層邊跨         M5AB=1/12×23.68×7.52=102.3 kN.m
頂層中跨         M5BC=1/12×9.08×32=6.8 kN.m
中間層邊跨       MAB=1/12×23.38×7.52=101 kN.m
中間層中跨       MBC=1/12×9.08×32=5.52 kN.m
4.縱梁引起柱端附加彎矩
邊框架縱梁偏向外側,中框架縱梁偏向內側
頂層外縱梁    MA5=-MD5=45.3×0.125=5.66kN.m   (逆時針為正)
頂層中縱梁     MB5=-MC5=-58.01×0.125=-7.25kN.m
樓層外縱梁     MA1=-MD1=48.83×0.125=6.10kN.m
樓層中縱梁     MB1=-MC1=-63.14×0.125=-7.89kN.m
5.節(jié)點不平衡彎矩
橫向框架的節(jié)點不平衡彎矩為通過該節(jié)點的各桿件(不包括縱向框架梁)在節(jié)點處的固端彎矩與通過該節(jié)點的縱梁引起柱端橫向附加彎矩之和,根據平衡原則,節(jié)點彎矩的正方向與桿端彎矩方向相反,一律以逆時針方向為正。
頂層:MA5=-MD5=-102.3+5.66=-96.64kN.m
      MB5=-MC5=102.3-6.8-7.25=88.25kN.m
樓層:MA=-MD=-101+6.10=-94.9kN.m
      MB=-MC=101-5.52-7.89=87.59kN.m
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6.恒荷載作用下彎矩二次分配
 
7.恒荷載作用下梁端剪力和柱軸力計算
表4-2 AB跨梁端剪力(kN)
g(kN/m)
(自重作用)
q(kN/m)
(板傳來作用)
gl/2 u=(l-a)
*q/2
MAB
(kN.m)
MBA
(kN.m)
∑Mik/l V1/A=gl/2
+u-∑Mik/l
VB=-(gl/2
+u+∑Mik/l)
3 5.64 48.03 32.76 42.32 -87.28 92.68 0.75 74.33 -75.83
2 5.64 32.48 32.76 42.32 -87.78 92.94 0.72 74.36 -75.8
1 5.64 32.48 32.76 42.32 -79.6 88.2 1.19 73.89 -76.27
 
注:l=7.5m a=4.05m
表4-3 BC跨梁端剪力(kN)
g(kN/m)
(自重作用)
q(kN/m)
(板傳來荷載作用)
l(m) gl/2 l*q/4 VB=gl/2+l*q/4 VC=-(gl/2+l*q/4)
3 3.19 9.57 3 3.65 6.89 10.54 -10.54
2 3.19 12.03 3 3.65 6.89 10.54 -10.54
1 3.19 12.03 3 3.65 6.89 10.54 -10.54
 
 
表4-4 AB跨跨中彎矩(kN.m)
g(kN/m)
(自重作用)
q(kN/m)
(板傳來作用)
gl/2 u=(l-a)
*q/2
MAB
(kN.m)
∑Mik/l V1/A=gl/2
+u-∑Mik/l
M=gl/2*l/4+u*1.05
-MAB- V1/A*l/2
3 5.64 48.03 32.76 42.32 -87.28 0.75 74.33 -76.9
2 5.64 32.48 32.76 42.32 -87.78 0.72 74.36 -76.51
1 5.64 32.48 32.76 42.32 -79.6 1.19 73.89 -83
 
注:l=7.5m a=4.05m
表4-5 BC跨跨中彎矩(kN.m)
g(kN/m)
(自重作用)
q(kN/m)
(板傳來荷載作用)
l(m) gl/2 l*q/4 MBC
(kN.m)
VB=gl/2
+l*q/4
M=gl/2*l/4+ql/4*l/6
-MBc- VB*l/2
3 3.19 9.57 3 3.65 6.89 -13.82 10.54 5.16
2 3.19 12.03 3 3.65 6.89 -13.65 10.54 4.99
1 3.19 12.03 3 3.65 6.89 -17.22 10.54 8.56
 
 
表4-6 柱軸力(kN)
邊柱A軸、D軸 中柱B軸、C軸
橫梁端部壓力 縱梁端部壓力 柱重 柱軸力 橫梁端部壓力 縱梁端部壓力 柱重 柱軸力
3 柱頂 66.03 48.83 22.5 369.91 90.72+10.54=101.26 63.14 22.5 503.87
柱底 392.41 526.37
2 柱頂 66.03 48.83 22.5 507.27 90.72+10.54=101.26 63.14 22.5 690.77
柱底 529.77 713.27
1 柱頂 73.84 48.83 28.44 652.44 98.53+10.54=109.07 63.14 28.44 885.45
柱底 682.75 915.79
 
 
8.內力圖
圖4.3 恒載作用下橫向框架彎矩圖(kN·m)
                   圖4.4 恒載作用下橫向框架剪力圖(kN)
              圖4.5 恒載作用下橫向框架軸力圖(kN)
 
 
 
 
4.2 活載作用下的框架內力
1.均布等效荷載

頂層邊跨
頂層中跨
中間層邊跨
中間層中跨
      表4-7均布等效荷載(單位:kN/m)
位置 AB梁 BC梁 CD梁
3 7.52 4.25 7.52
2 7.52 4.25 7.52
1 7.52 4.25 7.52
2.固端彎矩
頂層邊跨         M5AB=1/12×7.52×7.52=32.49 kN.m
頂層中跨         M5BC=1/12×4.25×32=2.05 kN.m
中間層邊跨       MAB=1/12×7.52×7.52=32.49 kN.m
中間層中跨       MBC=1/12×4.25×32=2.58 kN.m
3.縱梁引起柱端附加彎矩
邊框架縱梁偏向外側,中框架縱梁偏向內側
頂層外縱梁    MA5=-MD5=32.81×0.125=1.27kN.m   (逆時針為正)
頂層中縱梁    MB5=-MC5=-52.61×0.125=-2.33kN.m
樓層外縱梁    MA1=-MD1=32.81×0.125=1.27kN.m
樓層中縱梁    MB1=-MC1=-(2×0.5×8.1×0.5×8.1+2.5×(8.1-2.7+8.1)×3×0.5×0.5)×0.125=-2.78kN.m
4.節(jié)點不平衡彎矩
橫向框架的節(jié)點不平衡彎矩為通過該節(jié)點的各桿件(不包括縱向框架梁)在節(jié)點處的固端彎矩與通過該節(jié)點的縱梁引起柱端橫向附加彎矩之和,根據平衡原則,節(jié)點彎矩的正方向與桿端彎矩方向相反,一律以逆時針方向為正。
頂層:MA5=-MD5=-32.49+1.27=-31.22kN.m
      MB5=-MC5=32.49-2.33-2.05=28.11kN.m
樓層:MA=-MD=-32.49+1.27=-31.22kN.m
      MB=-MC=32.49-2.58-2.78=27.13kN.m
1. 活荷載作用下彎矩二次分配
                 圖4.6 活載作用下橫向框架彎矩的二次分配(KN·m)
6.恒荷載作用下梁端剪力和柱軸力計算
表4-8 滿跨活載作用下AB跨梁端剪力
q(kN/m) u=(l-a)*q/2 MAB(kN.m) MBA(kN.m) ∑Mik/l V1/A=u-∑Mik/l VB=-(u+∑Mik/l)
3 16.2 22.28 -27.82 30.14 0.32 21.96 -22.6
2 16.2 22.28 -27.99 30.21 0.31 21.97 -22.59
1 16.2 22.28 -25.29 28.78 0.48 21.8 -22.76
 
注:l=7.5m a=4.05m
表4-9 滿跨活載作用下BC跨梁端剪力
q(kN/m) l(m) ql/4(kN) VB= ql/4 (kN) VC=-ql/4 (kN)
3 6 3 4.59 4.59 -4.59
2 7.5 3 4.59 4.59 -4.59
1 7.5 3 4.59 4.59 -4.59
 
 
表4-10 滿跨活載作用下AB跨跨中彎矩
q(kN/m)
(板傳來荷載作用)
u=(l-a)*q/2 MAB
(kN.m)
∑Mik/l V1/A=u-∑Mik/l M=u*1.05-MAB- V1/A*l/2
3 16.2 22.28 -27.82 0.32 21.96 -27.82
2 16.2 22.28 -27.99 0.31 21.97 -27.71
1 16.2 22.28 -25.29 0.48 21.8 -29.8
 
注:l=7.5m a=4.05m
表4-11 滿跨活載作用下BC跨跨中彎矩
q(kN/m) l(m) ql/4(kN) MBC
(kN.m)
VB= ql/4 (kN) M= ql/4*l/6
-MBc- VB*l/2
3 6 3 4.59 -5.21 4.59 1.08
2 7.5 3 4.59 -5.16 4.59 1.03
1 7.5 3 4.59 -6.27 4.59 2.14
 
 
表4-12 滿跨活載作用下柱軸力 (kN)
邊柱(A軸) 中柱(B軸)
橫  梁
端部剪力
縱  梁
端部剪力
柱軸力 橫    梁
端部剪力
縱   梁
端部剪力
柱軸力
3 21.96 10.13 95.96 22.6+4.59=27.19 22.22 143.95
2 21.97 10.13 128.06 22.59+4.59=27.18 22.22 193.35
1 21.8 10.13 159.99 22.76+4.59=27.35 22.22 242.92
 

圖4.7 活載作用下橫向框架彎矩圖(kN·m)

圖4-8 活載作用下橫向框架剪力圖  (kN)
               
      圖4-9 活載作用下橫向框架軸力圖  (kN)
4.3地震作用下橫向框架的內力計算
多遇水平地震作用下位移驗算
水平地震作用下框架結構的層間位移(△u)i和頂點位移u i分別按下列公式計算:
(△u)i = Vi/∑D ij                                                  (3-1)
u i=∑(△u)k                                 (3-2)
各層的層間彈性位移角θe=(△u)i/hi,根據《建筑抗震設計規(guī)范》,考慮磚填充墻抗側力作用的框架,層間彈性位移角限值[θe]<1/550。
計算過程如表3-8所示:
表3-8 橫向水平地震作用下的位移驗算
樓層 hi (mm) Vi (kN) ∑Di
(kN/mm)
(Δue)
(mm)
ui
(mm)
  [ ]
3600 834.07 359.72 2.32 9.38 0.00064 1/550=
0.00182
3600 1383.83 359.72 3.85 7.06 0.00107
4550 1698.98 528.84 3.21 3.21 0.00071
 
滿足要求
表4-23 各層柱反彎點位置
層 次 柱別 K y0 α2 y2 α3 y3 y
3 邊柱 1.58 0.45 1 0 1 0 0.45
中柱 2.32 0.49 1 0 1 0 0.49
2 邊柱 1.58 0.5 1 0 1.35 0 0.5
中柱 2.32 0.5 1 0 1.35 0 0.5
1 邊柱 1.99 0.65 0.74 0 \ \ 0.65
中柱 2.92 0.58 0.74 0 \ \ 0.58
 
2.確定各層中各柱分配到的剪力、柱端彎矩。
Vij=DijVi/∑Dij                                                   (4-10)
Mbij=Vijxyh                                                      (4-11)
Muij=Vij(1-y)h                        (4-12)
表4-24 地震作用下框架柱剪力及柱端彎矩
h(m) Vi(kN) ΣD 柱別 Di Vik y M下 M上
3 3.6 834.07 359.72 邊柱 13.66 28.61 0.45 -46.35 -56.65
中柱 18.49 38.73 0.49 -68.32 -71.11
2 3.6 1383.83 359.72
 
邊柱 13.66 33.83 0.5 -60.89 -60.89
中柱 18.49 45.79 0.5 -82.42 -82.42
1 4.55 1698.98 528.84 邊柱 9.2 39.8 0.65 -125.47 -67.56
中柱 10.68 46.2 0.58 -129.96 -94.11
 
 
3.梁端彎矩,剪力,軸力計算
Mlb=ilb(Mci+1,j+Mci,j)/(ilb+irb)             (4-13)
Mrb=irb(Mci+1,j+Mci,j)/(ilb+irb)             (4-14)
Vb=(Mlb+ Mrb)/l                     (4-15)
Ni=∑(Vlb- Vrb)k                     (4-16)
具體計算過程見下表:
表4-25 梁端彎矩、剪力及柱軸力的計算
層次 邊梁 走道梁 柱軸力
Mlb Mrb l Vb Mlb Mrb l Vb 邊柱N 中柱N
3 87.15 69.56 7.5 21.77 46.96 46.96 3 34.79 -43.31 -25.46
2 107.24 89.99 7.5 27.39 60.75 60.75 3 45 -70.7 -43.07
1 128.45 105.39 7.5 32.48 71.14 71.14 3 52.7 -103.18 -63.29
 

 
圖4-18  地震作用下彎矩圖
                  V                                 N
 
圖4-19   地震作用下框架剪力及柱軸力(kN)
 
 
 
 
 
 
 
 
 
 
 
 
第五章   框架內力組合
5.1 彎矩調幅
1、 彎矩調幅,取β = 0.9進行調幅,調幅計算過程見下表。
                           (5-1)
                           (5-2)
                   (5-3)
表5-1 彎矩調幅計算
恒載 層次 跨向 梁彎矩標準值 調幅系數
β
調幅后彎矩標準值
Ml0 Mr0 M中 Ml Mr M
三層 AB -87.28 -92.68 76.9 0.9 -78.55 -83.41 85.9
BC -13.82 -13.82 -5.16 0.9 -12.44 -12.44 -3.78
二層 AB -87.78 -92.94 76.51 0.9 -79 -83.65 85.55
BC -13.65 -13.65 -4.99 0.9 -12.29 -12.29 -3.63

AB -79.6 -88.2 83 0.9 -71.64 79.38 91.39
BC -17.22 -17.22 -8.56 0.9 -15.5 -15.5 -6.34
 
活載 三層 AB -27.82 -30.14 27.82 0.9 -25.04 -27.13 30.72
BC -5.21 -5.21 -1.08 0.9 -4.69 -4.69 -0.56
二層 AB -27.99 -30.21 27.71 0.9 -25.19 -27.19 30.62
BC -5.16 -5.16 -1.03 0.9 -4.64 -4.64 -0.51
一層 AB -25.29 -28.78 29.8 0.9 -22.76 -25.9 32.5
BC -6.27 -6.27 -2.14 0.9 -5.64 -5.64 -1.51
BC -2.58 -2.58 -0.51 0.9 -2.32 -2.32 -0.25
一層 AB -12.66 -14.33 14.92 0.9 -11.39 -13.43 16.27
BC -3.15 -3.15 -1.08 0.9 -2.84 -2.84 -0.77
 
一般組合采用三種組合形式即可:
①可變荷載效應控制時: 
                     
②永久荷載效應控制時,
5.2橫向框架梁內力組合
 
表5-2 橫向框架梁內力組合(一般組合)
桿件 跨向 截面 內力 恒載 活荷載 1.2恒+1.4活 1.35恒+活  
 



AB
梁左端 M -62.34 -19.65 -102.32 -103.81  
V 71.13 21.59 115.58 117.62  
跨中 M 104.64 34.93 174.47 176.19  
梁右端 M -75.88 -24.12 -124.82 -126.56  
V -75.31 -22.97 -122.53 -124.64  
BC
梁左端 M -21.71 -6.88 -35.68 -36.19  
V 12.83 3.65 20.51 20.97  
跨中 M -11.06 -3.6 -18.31 -18.53  
梁右端 M -21.71 -6.88 -35.68 -36.19  
V -12.83 -3.65 -20.51 -20.97  



AB
梁左端 M -79 -25.19 -130.07 -131.84  
V 74.36 21.97 119.99 122.36  
跨中 M 85.55 30.62 145.53 146.11  
梁右端 M -83.65 -27.19 -138.45 -140.11  
V -75.8 -22.59 -122.59 -124.92  
BC
梁左端 M -12.29 -4.64 -21.24 -21.23  
V 10.54 4.59 19.07 18.82  
跨中 M -3.63 -0.51 5.07 -5.41  
梁右端 M -12.29 -4.64 -21.24 -21.23  
V -10.54 -4.59 -19.07 -18.82  



AB
梁左端 M -71.64 -22.76 -117.83 -119.47  
V 73.89 21.8 119.19 121.55  
跨中 M 91.39 32.5 155.17 123.38  
梁右端 M -79.38 -25.9 -131.52 -133.06  
V -76.27 -22.76 -123.39 -125.72  
BC
梁左端 M -15.5 -5.64 -26.5 -26.57  
V 10.54 4.59 19.07 18.82  
跨中 M -6.34 -1.51 -9.72 -10.07  
梁右端 M -15.5 -5.64 -26.5 -26.57  
V -10.54 -4.59 -19.07 -18.82  
 
 
 
 
表5-3 橫向框架梁內力組合(考慮地震組合)
桿件 跨向 截面 內力 內力組合          
恒載 地震作用 1.2[恒+0.5(雪+活)]+1.3地震作用  
向左 向右 向左 向右  



AB
梁左端 M -62.34 26.91 -26.91 -44.13 -114.1  
V 71.13 -6.57 6.57 80.54 92.34  
跨中 M 104.64 3.26 -3.26 52.47 44.15  
梁右端 M -75.88 -20.4 20.4 -122.06 -69.02  
V -75.31 -6.57 6.57 -102.68 -85.6  
BC
梁左端 M -21.71 13.77 -13.77 -8.86 -44.66  
V 12.83 -10.2 10.2 2.52 29.04  
跨中 M -11.06 0 0 -13.63 -13.63  
梁右端 M -21.71 -13.77 13.77 -44.66 -8.86  
V -12.83 -10.2 10.2 -29.04 -2.52  



AB
梁左端 M -79 107.24 -107.24 29.48 -249.34  
V 74.36 -27.39 27.39 66.81 138.03  
跨中 M 85.55 8.63 -8.63 132.25 109.81  
梁右端 M -83.65 -89.99 89.99 -233.64 0.34  
V -75.8 -27.39 27.39 -140.12 -68.9  
BC
梁左端 M -12.29 60.75 -60.75 61.44 -96.51  
V 10.54 -45 45 -43.09 73.91  
跨中 M -3.63 0 0 -4.66 -4.66  
梁右端 M -12.29 -60.75 60.75 -96.51 61.44  
V -10.54 -45 45 -73.91 43.09  



AB
梁左端 M -71.64 128.45 -128.45 67.35 -266.62  
V 73.89 -32.48 32.48 59.54 143.98  
跨中 M 91.39 11.53 -11.53 144.18 114.2  
梁右端 M -79.38 -105.39 105.39 -248.38 25.64  
V -76.27 -32.48 32.48 -147.39 -62.94  
BC
梁左端 M -15.5 71.14 -71.14 70.47 -114.49  
V 10.54 -52.7 52.7 -53.1 83.92  
跨中 M -6.34 0 0 -8.53 -8.53  
梁右端 M -15.5 -71.14 71.14 -114.49 70.47  
V -10.54 -52.7 52.7 -83.92 53.1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.3橫向框架柱內力組合
表5-4 橫向框架柱內力組合(一般組合)
桿件 跨向     恒載 活荷載 1.2恒+1.4活 Nmax及相應的N Nmin及相應的M Nmax及相應的M  
 
三層柱 A柱 柱頂 M 40.55 13.26 67.22 75.17 55.56 68.00  
N 369.91 95.96 578.24 571.55 558.05 595.34  
柱底 M 40.07 13.11 66.44 72.63 56.58 67.2  
N 392.41 95.96 529.64 598.56 585.05 625.71  
B柱 柱頂 M -35.44 -11.07 -58.03 -68.82 -68.82 -58.91  
N 503.87 143.95 806.17 782.08 782.08 824.17  
柱底 M -35.19 -10.99 57.61 -67.94 -67.94 -58.5  
N 526.37 143.95 833.17 809.08 809.08 854.55  
二層柱 A柱 柱頂 M 41.54 13.59 68.87 78.9 55.04 69.67  
N 507.27 128.06 788.00 781.92 758.24 812.87  
柱底 M 48.85 15.98 80.99 90.69 66.82 81.93  
N 529.77 128.06 815.01 808.92 785.24 843.25  
B柱 柱頂 M -36.1 -11.26 -59.08 -73.62 -73.62 -60.00  
N 690.77 193.35 1099.61 1065.34 1065.34 1125.89  
柱底 M -41.28 -12.86 67.54 -81.86 -81.86 -68.59  
N 713.27 193.35 1126.61 1092.33 1092.33 1156.26  
底層柱 A柱 柱頂 M 24.66 8.05 40.86 55.61 23.86 41.34  
N 652.44 159.99 1006.91 1003.39 965.64 1040.78  
柱底 M 12.33 4.03 20.44 49.35 -9.6 20.68  
N 682.75 159.99 1043.29 1039.76 1002.01 1081.7  
V -7.63 -2.49 -11.65 -21.64 -2.94 -12.79  
B柱 柱頂 M -21.89 -6.86 -29.75 -57.01 -57.01 -36.41  
N 885.45 242.92 1402.67 1357.05 1357.05 1438.28  
柱底 M -10.95 -3.43 -17.94 -47.98 -47.98 -18.21  
N 915.79 242.92 1439.04 1393.46 1393.46 1479.24  
V 6.77 2.12 11.09 24.05 24.05 11.26  
 
 
注:表中畫橫線數值用于后面的基礎設計中。

 
表5-5 橫向框架柱內力組合(考慮地震組合)
        恒載 活荷載 地震作用 1.2恒++1.3地震作用+0.5活 ±|Mmax|及相應的 N Nmin及相應的M Nmax及相應的M
向左 向右 向左 向右
三層柱 A柱 柱頂 M 40.55 13.26 -56.65 56.65 -17.01 130.29 130.29 -17.01 130.29
N 369.91 95.96 -43.31 43.31 430.78 543.38 543.38 430.78 543.38
柱底 M 40.07 13.11 -46.35 46.35 -4.29 116.22 116.22 -4.29 116.22
  392.41 95.96 -43.31 43.31 457.78 570.38 570.38 457.78 570.38
B柱 柱頂 M -35.44 -11.07 -71.11 71.11 -141.74 43.15 -141.74 -141.74 43.15
N 503.87 143.95 -25.46 25.46 632.57 698.76 632.57 632.57 698.76
柱底 M -35.19 -10.99 -68.32 68.32 -137.79 39.84 -137.79 -137.79 39.84
N 526.37 143.95 -25.46 25.46 659.57 725.76 659.57 659.57 725.76
二層柱 A柱 柱頂 M 41.54 13.59 -60.89 60.89 -21.13 137.19 137.19 -21.13 137.19
N 507.27 128.06 -70.7 70.7 579.24 763.06 763.06 579.24 763.06
柱底 M 48.85 15.98 -60.89 60.89 -10.93 147.39 147.39 -10.93 147.39
N 529.77 128.06 -70.7 70.7 606.24 790.06 790.06 606.24 790.06
B柱 柱頂 M -36.1 -11.26 -82.42 82.42 -157.32 56.97 -157.32 -157.32 56.97
N 690.77 193.35 -43.07 43.07 861.4 973.38 861.4 861.4 973.38
柱底 M -41.28 -12.86 -82.42 82.42 -164.55 49.74 -164.55 -164.55 49.74
N 713.27 193.35 -43.07 43.07 888.4 1000.38 888.4 888.4 1000.38
底層柱 A柱 柱頂 M 24.66 8.05 -67.56 67.56 -53.4 122.26 122.26 -53.4 122.26
N 652.44 159.99 -103.18 103.18 730.36 998.63 998.63 730.36 998.63
柱底 M 12.33 4.03 -125.47 125.47 -145.89 180.33 180.33 -145.89 180.33
N 682.75 159.99 -103.18 103.18 766.73 1035 1035 766.73 1035
V -7.63 -2.49 39.8 -39.8 41.08 -62.4 -62.4 41.08 -62.4
B柱 柱頂 M -21.89 -6.86 -94.11 94.11 -152.76 91.92 -152.76 -152.76 91.92
N 885.45 242.92 -63.29 63.29 1096.27 1260.82 1096.27 1096.27 1260.82
柱底 M -10.95 -3.43 -129.96 129.96 -184.16 153.73 -184.16 -184.16 153.73
N 915.79 242.92 -63.29 63.29 1132.68 1297.23 1132.68 1132.68 1297.23
V 6.77 2.12 46.2 -46.2 69.47 -50.65 69.47 69.47 -50.65
注:表中畫橫線數值用于基礎抗震設計中。
 

第六章   框架梁、柱截面設計
6.1框架梁截面設計
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

注:正截面受彎承載力計算時,負彎矩處按矩形截面計算,正彎矩處按T形截面計算。
表 6-1橫梁AB、BC跨正截面受彎承載力計算
混凝土強度等級 b×h
(mm2)
截面位置 組合內力 柱邊截面彎矩   
(kN.m)
h0
(mm)
  ξ   (mm2)   
實際選用(mm2)
備注
M
(kN.m)
V(kN)

C25 300×700 A3支 座 -140.33 120.49 -110.21 660 0.082 0.086 685 3 18,As=763 ξ﹤0.55
跨 中 146.69   146.69 660 0.014 0.014 879 3 20,As=942 ξ﹤0.55
B3支座左 -145.84 -123.1 -115.07 660 0.086 0.090 717 3 18,As=763 ξ﹤0.55
300×400 B3支座右 -28.65 25.46 -22.29 360 0.040 0.041 176 2 14,As=308 ξ﹤0.55
跨 中 -5.66   -5.66 360 0.010 0.010 44 2 14,As=308 ξ﹤0.55
C3支座左 -28.65 -25.46 -22.29 360 0.040 0.041 176 2 14,As=308 ξ﹤0.55
三層 C25 300×700 A2支 座 -146.5 122.00 -116.00 660 0.086 0.090 723 3 18,As=763 ξ﹤0.55
跨 中 146.11   146.11 660 0.014 0.014 876 3 20,As=942 ξ﹤0.55
B2支座左  -151.35 -124.51 -182.48 660 0.136 0.146 1172 4 20,As=1256 ξ﹤0.55
300×400 B2支座右 - 31.87 26.79 -25.17 360 0.045 0.046 199 2 14,As=308 ξ﹤0.55
跨 中 -5.41   -5.41 360 0.010 0.010 42 2 14,As=308 ξ﹤0.55
C2支座左 -31.87 -26.79 -25.17 360 0.045 0.046 199 2 14,As=308 ξ﹤0.55

C25 300×700 A1支 座 -142.45 123.17 -111.66 660 0.083 0.087 695 3 18,As=763 ξ﹤0.55
跨 中 155.17   155.17 660 0.014 0.014 930 3 20,As=942 ξ﹤0.55
B1支座左 -150.72 -127.23 -118.91 660 0.088 0.093 742 3 18,As=763 ξ﹤0.55
300×400 B1支座右 -41.09 29.82 -33.64 360 0.060 0.062 268 2 14,As=308 ξ﹤0.55
跨 中 -10.07   -10.07 360 0.018 0.018 78 2 14,As=308 ξ﹤0.55
C1支座左 -41.09 -29.82 -33.64 360 0.060 0.062 268 2 14,As=308 ξ﹤0.55
 
表 6-2 橫梁AB、BC跨正截面抗震驗算
混凝土強度等級 b×h
(mm2)
截面位置 組合內力 柱邊截面彎矩  
 (kN.m)
  h0
(mm)

 
 
 
ξ  (mm2)  實際選用
(mm2)
備注
M
(kN.m)
V(kN)
頂層 C25 300×700 A3支 座 -222.59 130.67 -189.92 0.75 660 0.106 0.112 898 3 20,As=942 安全
跨 中 132.95   132.95 0.75 560 0.074 0.077   3 20,As=942 安全
B3支座左 -206.78 -115.43 -235.64 0.75 660 0.131 0.141 1132 3 22,As=1140 安全
300×400 B3支座右 -78.78 60.64 -63.62 0.75 360 0.086 0.090 385 3 14,As=461 安全
跨 中 -4.86   -4.86 0.75 360 0.007 0.007   2 14,As=308 安全
C3支座左 -78.78 -130.67 -111.45 0.75 360 0.150 0.164 702 3 18,As=763 安全
三層 C25 300×700 A2支 座 -249.34 138.03 214.83 0.75 660 0.120 0.128 1025 4 18,As=1017 安全
跨 中 132.25   132.25 0.75 660 0.074 0.077   3 20,As=942 安全
B2支座左 -233.64 -140.12 -268.67 0.75 660 0.150 0.163 1306 4 20As=1256 安全
300×400 B2支座右 -96.51 73.91 -78.03 0.75 360 0.105 0.111 478 3 14,As=461 安全
跨 中 -4.66   -4.66 0.75 360 0.006 0.006   2 14,As=308 安全
C2支座左 -96.51 -73.91 -114.99 0.75 360 0.155 0.169 727 3 18,As=763 安全
二層 C25 300×700 A1支 座 -266.62 143.98 -230.63 0.75 660 0.129 0.138 1106 3 22As=1140 安全
跨 中 144.18   144.18 0.75 660 0.080 0.084   3 20,As=942 安全
B1支座左 -248.38 -147.39 -285.23 0.75 660 0.159 0.174 1395 3 25,As=1473 安全
300×400 B1支座右 -114.49 83.92 -93.51 0.75 360 0.126 0.135 580 3 16,As=603 安全
跨 中 -8.53   -8.53 0.75 360 0.012 0.012   2 14,As=308 安全
C1支座左 -114.49 83.92 -93.51 0.75 360 0.126 0.135 580 3 16,As=603 安全
注:正截面抗震驗算時,負彎矩處按矩形截面計算,正彎矩處按T形截面計算。梁內縱筋由抗震設計要求控制。表中空格處表示按抗震計算的配筋小于按抗彎承載力計算的配筋,取抗彎承載力的配筋。
 
表 6-3橫梁AB、BC跨斜截面受剪承載力計算  
層次 混凝土
強度等級
b×h
(mm2)
斜截面
位  置
組合內力
V(kN)
h0 0.25βcfcbh0
(kN)
0.                 7ftbh0
(kN)
選用箍筋
(雙肢)

(kN)
備注  
 
 
頂層 C25 300×700 A3支座 120.49 660 600.60 168.17 8@100 316.64 安全  
B3支座左 123.1 660 600.60 168.17 8@100 316.64 安全  
300×400 B3支座右 25.46 360 321.75 90.09 8@100 185.54 安全  
C3支座左 25.46 360 321.75 90.09 8@100 185.54 安全  
三層 C25 300×700 A2支座 122.00 660 600.60 168.17 8@100 316.64 安全  
B2支座左 124.51 660 600.60 168.17 8@100 316.64 安全  
300×400 B2支座右 26.79 360 321.75 90.09 8@100 185.54 安全  
C2支座左 26.79 360 321.75 90.09 8@100 185.54 安全  
二層 C25 300×700 A1支座 123.17 660 600.60 168.17 8@100 316.64 安全  
B1支座左 127.23 660 600.60 168.17 8@100 316.64 安全  
300×400 B1支座右 29.82 360 321.75 90.09 8@100 185.54 安全  
C1支座左 29.82 360 321.75 90.09 8@100 185.54 安全  
 
 
 
 
 
 
 
 
 
 
 
 
表 6-4橫梁AB、BC跨斜截面受剪抗震驗算    
混凝土強度等級 b×h
(mm2)
斜截面
位  置
(kN) (kN.m) 組合內V(kN) h0     (kN)
(kN)
選用箍筋
(雙肢)

(kN)
備注  
 
 
頂層 C25 300×700 A3支座 102.37 210.78 134.57 660 565.27 118.71 8@100 293.37    
B3支座左 104.56 210.78 136.76 660 565.27 118.71 8@100 293.37    
300×400 B3支座右 15.41 121.88 65.06 360 302.82 63.59 8@100 175.88    
C3支座左 15.41 121.88 65.06 360 302.82 63.59 8@100 175.88    
三層 C25 300×700 A3支座 102.42 263.12 142.62 660 565.27 118.71 8@100 293.37    
B3支座左 104.51 263.12 144.71 660 565.27 118.71 8@100 293.37    
300×400 B3支座右 15.41 157.95 79.76 360 302.82 63.59 8@100 175.88    
C3支座左 15.41 157.95 79.76 360 302.82 63.59 8@100 175.88    
二層 C25 300×700 A1支座 101.76 315.73 150.00 660 565.27 118.71 8@100 293.37    
B1支座左 105.67 315.73 153.91 60 565.27 118.71 8@100 293.37    
300×400 B1支座右 15.41 184.96 90.76 360 302.82 63.59 8@100 175.88    
C1支座左 15.41 184.96 90.76 360 302.82 63.59 8@100 175.88    
                             

6.2 框架柱截面設計
表6-5框架柱正截面壓彎承載力計算(|Mmax|)
A柱 層次 砼強度 b×h lo lo/h 柱截面 組合內力 eo ea ei ei/ho ζ1 ζ2 η e ξ 判斷破壞類型
ζ<ζb
ζb =0.55
大偏壓 x-2a' As=As'(mm2)
(x<2a')
As=As'(mm2)
(x>2a')
選用鋼筋(mm2) 備注
(mm2) (m) Mmax (kN.m) N(kN) (mm) (mm) (mm) (mm) ξ
三層 C25 500×500 4.5 9 上端 75.17 571.55 131.52 20 151.52 0.33 1.00 1.00 1.18 388.13 0.18 大偏壓 0.18 2.8   <0 2Φ18,As=As'=509 ρ>0.215%
9 下端 72.63 598.56 121.34 20 141.34 0.31 1.00 1.00 1.19 377.96 0.18 大偏壓 0.18 3.71   <0 2Φ18,As=As'=509 ρ>0.215%
二層 C25 500×500 4.5 9 上端 78.9 781.92 100.91 20 120.91 0.26 1.00 1.00 1.22 357.52 0.24 大偏壓 0.24 29.36   <0 2Φ18,As=As'=509 ρ>0.215%
9 下端 90.69 808.92 112.11 20 132.11 0.29 1.00 1.00 1.20 368.73 0.25 大偏壓 0.25 33.14   <0 2Φ18,As=As'=509 ρ>0.215%
底層 C25 500×500 4.55 9.7 上端 55.61 1003.39 55.42 20 75.42 0.16 1.00 1.00 1.41 316.34 0.31 大偏壓 0.31 60.33   <0 2Φ18,As=As'=509 ρ>0.215%
9.7 下端 49.35 1039.76 47.46 20 67.46 0.15 1.00 1.00 1.46 308.38 0.32 大偏壓 0.32 65.42   <0 2Φ18,As=As'=509 ρ>0.215%
 
表6-6框架柱正截面壓彎承載力計算(|Mmax|)
B柱 層次 砼強度 b×h lo lo/h 柱截面 組合內力 eo ea ei ei/ho ζ1 ζ2 η e ξ 判斷破壞類型
ζ<ζb
ζb =0.55
小偏壓 As=As' 大偏壓 x-2a' e' As=As'(mm2)
(x<2a')
As=As'(mm2)
(x>2a')
選用鋼筋(mm2) 備注
(mm2) (m) Mmax (kN.m) N(kN) (mm) (mm) (mm) (mm) ξ (mm2) ξ
三層 C25 500×500 4.5 9 上端 68.82 782.08 88.00 20 108.00 0.23 1.00 1.00 1.25 344.61 0.24 大偏壓     0.24 29.38     <0 2Φ18,As=As'=509 ρ>0.215%
9 下端 67.94 809.08 83.97 20 103.97 0.23 1.00 1.00 1.26 340.59 0.25 大偏壓     0.25 33.16     <0 2Φ18,As=As'=509 ρ>0.215%
二層 C25 500×500 4.5 9 上端 73.62 1065.34 69.10 20 89.10 0.19 1.00 1.00 1.30 325.72 0.32 大偏壓     0.32 69.00     <0 2Φ18,As=As'=509 ρ>0.215%
9 下端 81.86 1092.33 74.94 20 94.94 0.21 1.00 1.00 1.28 331.56 0.33 大偏壓     0.33 72.77     <0 2Φ18,As=As'=509 ρ>0.215%
底層 C30 500×500 4.55 9.7 上端 57.01 1357.05 42.01 20 62.01 0.13 1.00 1.00 1.50 302.93 0.41 大偏壓     0.41 109.80     <0 2Φ18,As=As'=509 ρ>0.215%
9.7 下端 47.98 1393.46 34.43 20 54.43 0.12 1.00 1.00 1.57 295.35 0.42 大偏壓     0.42 114.89     <0 2Φ18,As=As'=509 ρ>0.215%
表6-11框架柱正截面壓彎抗震驗算(|Mmax|)
A柱 層次 砼強度 b×h lo lo/h 柱截面 組合內力 eo ea ei ei/ho ζ1 ζ2 η e ξ 判斷破壞類型
ζ<ζb
ζb =0.55
小偏壓 As=As' 大偏壓 x-2a' e' As=As'(mm2)
(x<2a')
As=As'(mm2)
(x>2a')
選用鋼筋(mm2) 備注
(mm2) (m) Mmax (kN.m) N(kN) (mm) (mm) (mm) (mm)    ξ (mm2) ξ
三層 C25 500×500 4.5 9 上端 122.42 543.38 225.29 20 245.29 0.53 1.00 1.00 1.11 481.91 0.17 大偏壓     0.17 -4.00 61.91 267   2Φ18,As=As'=509 ρ>0.215%
9 下端 137.14 570.38 240.44 20 260.44 0.57 1.00 1.00 1.10 497.05 0.17 大偏壓     0.17 -0.23 77.05 349   2Φ18,As=As'=509 ρ>0.215%
二層 C25 500×500 4.5 9 上端 137.14 763.06 179.72 20 199.72 0.43 1.00 1.00 1.13 436.34 0.23 大偏壓     0.23 26.72     180 2Φ18,As=As'=509 ρ>0.215%
9 下端 168.34 790.06 213.07 20 233.07 0.51 1.00 1.00 1.11 469.69 0.24 大偏壓     0.24 30.50     407 2Φ18,As=As'=509 ρ>0.215%
底層 C25 500×500 4.55 9.7 上端 124.94 998.63 125.11 20 145.11 0.32 1.00 1.00 1.21 386.03 0.30 大偏壓     0.30 59.67     <0 2Φ18,As=As'=509 ρ>0.215%
9.7 下端 180.33 1035.00 174.23 20 194.23 0.42 1.00 1.00 1.16 435.15 0.31 大偏壓     0.31 64.76     390 2Φ18,As=As'=509 ρ>0.215%
表6-12框架柱正截面壓彎抗震驗算(|Mmax|)
B柱 層次 砼強度 b×h lo lo/h 柱截面 組合內力 eo ea ei ei/ho ζ1 ζ2 η e ξ 判斷破壞類型
ζ<ζb
ζb =0.55
小偏壓 As=As' 大偏壓 x-2a' e' As=As'(mm2)
(x<2a')
As=As'(mm2)
(x>2a')
選用鋼筋(mm2) 備注
(mm2) (m) Mmax (kN.m) N(kN) (mm) (mm) (mm) (mm)    ξ (mm2) ξ
三層 C25 500×500 4.5 9 上端 141.74 632.57 224.07 20 244.07 0.53 1.00 1.00 1.11 480.68 0.19 大偏壓     0.19 8.47     326 2Φ18,As=As'=509 ρ>0.215%
9 下端 137.79 659.57 208.91 20 228.91 0.50 1.00 1.00 1.12 465.52 0.20 大偏壓     0.20 12.25     270 2Φ18,As=As'=509 ρ>0.215%
二層 C25 500×500 4.5 9 上端 157.32 861.4 182.63 20 202.63 0.44 1.00 1.00 1.13 439.25 0.26 大偏壓     0.26 40.48     179.86 2Φ18,As=As'=509 ρ>0.215%
9 下端 164.55 888.4 185.22 20 205.22 0.45 1.00 1.00 1.13 441.83 0.27 大偏壓     0.27 44.25     407.17 2Φ18,As=As'=509 ρ>0.215%
底層 C25 500×500 4.55 9.7 上端 152.76 1096.27 139.35 20 159.35 0.35 1.00 1.00 1.19 400.26 0.33 大偏壓     0.33 73.32     <0 2Φ18,As=As'=509 ρ>0.215%
9.7 下端 184.16 1132.68 162.59 20 182.59 0.40 1.00 1.00 1.17 423.50 0.34 大偏壓     0.34 78.42     390.38 2Φ18,As=As'=509 ρ>0.215%
 
 

第七章  樓梯結構設計
樓梯間開間為8.1m,進深為7.5m。采用板式樓梯底層,共26級踏步,踏步寬0.28m,其踏步的水平投影長度為12×0.28=3.36m。二至三層樓梯均為等跑樓梯,共24級踏步,踏步寬0.28m,其踏步的水平投影長度為11×0.28=3.08m。樓梯的踢面和踏面均采用瓷磚面層,踏面采用防滑處理,底面為水泥砂漿粉刷;炷翉姸鹊燃塁25,板采用HPB235鋼筋,梁縱筋采用HRB335鋼筋。
7.1 樓梯板計算
 
板傾斜度     tgα=150/300=0.5     cosα=0.894
設板厚h=120mm,h=1/30—1/25=118—142 mm板厚滿足要求
取1m寬板帶計算。
1、荷載計算:
梯段板的荷載:
荷載種類 荷載標準值(KN/m)
恒載 30厚瓷磚 (0.3+0.15)×0.55/0.3=0.825
三角形踏步 0.3×0.15×25/2/0.3=1.875
斜板 0.12×25/0.894=3.356
板底抹灰 0.02×17/0.894=0.38
小計 6.436
活荷載 2.5
荷載分項系數rG=1.2      rQ=1.4
設計值:g=1.2×6.436=7.723 KN/m
q=1.4×2.5=3.5KN/m
基本組合的總荷載設計值  g+q=7.723+3.5=11.223 KN/m
2、截面設計:
板水平計算跨度
跨中最大彎矩     M=(g+q)lo2/10=11.223×3.552/10=14.143 KN·m
h0=120-20=100 mm
αs=M/(fcmbh02)=14.143×106/(1.0×14.3×1000×1002)=0.099
rs=0.948
As=M /(rsfyh0)=14.143×106/(0.948×210×100)=710 mm2
選 10@100,實有As=714 mm2,
分布筋 8@200,
7.2 平臺板計算
設平臺板厚h=100mm,取1m寬板帶計算。
1、荷載計算:
平臺板的荷載:
平臺板荷載
荷載種類 荷載標準值(KN/m)
恒載 30厚瓷磚 0.55
100厚混凝土板 0.1×25=2.5
板底抹灰 0.02×17=0.34
小計 3.39
活荷載 2.5
荷載分項系數rG=1.2      rQ=1.4
設計值:g=1.2×3.39=4.068 KN/m
q=1.4×2.5=3.5KN/m
基本組合的總荷載設計值   p= g+q =7.568KN/m
2、截面設計:
靠窗的平臺板:
l0=2500-125+100/2=2.125m
M=(g+q)l02/8=7.568×2.1252/8=4.272 KN·m
αs=M/(fcbf,h02)= =0.07
ξ=1-(1-2αs)1/2=0.073
As=ξfcb,h0/fy= =267 mm2
選 8@180,實有As=279 mm2,
分布筋 6@200, 支座按構造要求配筋
靠走廊的平臺板:
l0=1400-125+100/2=1.325m
M=(g+q)l02/8=7.568×1.3252/8=1.661 KN·m
αs=M/(fcbf,h02)= =0.027
ξ=1-(1-2αs)1/2=0.027
As=ξfcb,h0/fy= =99mm2
選 6@180,實有As=157 mm2,
分布筋 6@200, 支座按構造要求配筋
7.3 平臺梁計算
設平臺梁截面  b=250mm     h=300mm
1、荷載計算:
平臺梁1的荷載:
荷載種類 荷載標準值(KN/m)
恒載 梁自重 0.25×(0.3-0.1)×25=1.2
梁側及底抹灰 [2×(0.3-0.1)+0.25]×0.02×17=0.218
平臺板傳來 3.39×(2.2+0.245)/2=4.144
梯段板傳來 6.436×3.3/2=10.619
小計 16.159
設計值: =(1.2+0.218+10.619)×1.2=14.423 KN/m
=4.114×1.2=4.937 KN/m4
活荷載:梯段板傳來:2.5×3.3/2=4.125 KN/m
平臺板傳來:  KN/m
設計值:  KN/m
 KN/m
平臺梁2的荷載:b=240mm        h=300mm
平臺梁2荷載
荷載種類 荷載標準值(KN/m)
恒載 梁自重 0.25×(0.3-0.1)×25=1.2
梁側及底抹灰 [2×(0.3-0.1)+0.25]×0.02×17=0.218
平臺板傳來 3.39×(1.4+0.245)/2=2.789
梯段板傳來 6.436×3.3/2=10.619
小計 14.826
設計值: =(1.2+0.218+10.619)×1.2=14.423 KN/m
=2.789×1.2=3.347 KN/m
活荷載:梯段板傳來:2.5×3.3/2=4.125 KN/m
平臺板傳來:  KN/m
設計值:  KN/m
 KN/m
2、截面設計:
TL1:
計算跨度l0=1.05ln=1.05×(4.5-0.25)=4.473 ml2
支座最大剪力:

=
=
跨中最大彎矩:
M=(g1+q1)l02/8/2+(g2+q2)l02/8
=(14.423+4.125) ×4.4732/8/2+(4.937+4.27) ×4.4732/8
=46.22KN
截面按倒L形計算,
bf,= mm
按梁凈距考慮
不按梁的高度 考慮:
h0=300-35=265 mm
由于       取


屬第一類T形截面。
αs=M/(fcmbh02)=46.22×106/(1.0×14.3×746×2652)=0.0617
rs=0.968
As=M /(rsfyh0)=46.22×106/(210×0.968×265)=858 mm2
選3 20實有As=942 mm2
受剪承載力計算:

截面尺寸滿足要求

僅需按構造要求配置箍筋
選用雙肢 8@200,
TL2:
計算跨度l0=1.05ln=1.05×(4.5-0.24)=4.473 ml2
支座最大剪力:

=
=
跨中最大彎矩:
M=(g1+q1)l02/8/2+(g2+q2)l02/8
=(14.423+4.125) ×4.4732/8/2+(3.347+3.29) ×4.4732/8
=44.951KN
截面按倒L形計算,
bf,= mm
按梁凈距考慮
不按梁的高度 考慮:
h0=300-35=265 mm
由于       取


屬第一類T形截面。
αs=M/(fcmbh02)=44.951×106/(1.0×14.3×746×2652)=0.06
rs=0.969
As=M /(rsfyh0)=44.951×106/(210×0.969×265)=834 mm2
選3 20實有As=942 mm2
受剪承載力計算:

截面尺寸滿足要求

僅需按構造要求配置箍筋
選用雙肢 8@200,
 
 
 
 
 
 
 
第八章  現澆樓蓋設計
8.1現澆樓蓋設計
樓板厚120mm,樓面活荷載標準值2 kN/m2。走廊活荷載標準值2.5 kN/m2。鋼筋混凝土板泊松比ν=1/6。
1、 荷載設計值:
辦公室恒載設計值    g=4.01×1.2=4.55kN/m2
   活載設計值    q=2×1.4=2.8kN/m2     
走廊恒載設計值      g = 1.2×4.01= 4.55kN/m2
 活載設計值      q=2.5×1.4=3.5kN/m2
所以 教室部分  p=g + q =4.55+2.8=7.35kN/m2
                p,= g + q/2=4.55+2.8/2=5.9kN/m2
                p ,,= q/2=2.8/2=1.4kN/m2
      走廊部分     p=g + q =4.55+3.5=8.0kN/m2
                p,= g + q/2=4.55+3.5/2=6.3kN/m2
                p ,,= q/2=3.5/2=1.75kN/m2

2、 按雙向板彈性理論計算區(qū)格彎矩:
A區(qū)格板:      lx=3.75m
               ly=4.05m
               lx / ly =3.75/4.05=0.625
查《混凝土與砌體結構設計》附表得兩鄰邊固定兩鄰邊簡支時的彎矩和四邊簡支時的系數(表中α為彎矩系數)
lx/ly 支承條件           
   0.63 兩鄰邊固定兩鄰邊簡支   0.0508  0.0257   -0.1065   -0.0757
四邊簡支   0.0821  0.0389     —     —


 
 


3.截面設計
板跨中截面兩個方向有效高度的確定
假定鋼筋選用φ10,則
                 
板支座截面有效高度為
由于樓蓋周邊按鉸支考慮,因此I角區(qū)板的彎矩不折減,而中央區(qū)格和 的區(qū)格板的跨中彎矩和支座彎矩可減少20%,但考慮到本設計中彎矩值均較小,可不做折減。計算配筋時,近似取內力臂系數 ,
表8-1  雙向板配筋計算表
 
截面
 
h
(mm)
M
(kNm/m)

( )
 
配筋情況
 
實配
( )
 
 
 
 


 
 
A
 方向 90 4.2 301 φ10@200 393
 方向 100 8.45 529 φ10@150 523
 
B
 方向 90 1.64 117 φ10@200 393
 方向 100 3.51 220 φ10@200 393
 
C
 方向 90 2.88 206 φ10@200 393
 方向 100 6.4 401 φ10@200 393
 
D
 方向 90 0.89 64 φ10@200 393
 方向 100 2.27 142 φ10@200 393
 
 
 
 

A-C   100 -12.68 794 φ10@100 785
A-D   100 -9.02 565 φ10@140 561
A-B   100 -9.02 565 φ10@140 561
B-D   100 -3.67 230 φ10@200 393
C-C   100 -9.56 599 φ10@130 604
D-C   100 -6.81 427 φ10@180 436
D-D   100 -2.68 167 φ10@200 393
 
 
 
 
 
 
 
 
 
 
 
第九章  基礎設計
9.1 荷載計算
按照《地基基礎設計規(guī)范》和《建筑抗震設計規(guī)范》的有關規(guī)定,上部結構傳至基礎頂面上的荷載只需按照荷載效應的基本組合來分析確定。
混凝土設計強度等級采用C30,基礎底板設計采用HRB335鋼,fy=300 N/mm,室內外高差為0.45 m,基礎埋置深度為1.2m,基礎高度600mm。上柱斷面為500×500,基礎部分柱斷面保護層加大,兩邊各增加50,故地下部分柱頸尺寸為600×600
層次 土類 平均厚度
(m)
承載力特征值fak(kPa) 重度
(KN/m3)
土層剪切波速(m/s)
1 雜填土 0.8 90 16.5  
2 素填土 0.9 100 16.0  
3 粉塵沙土 6.2 160 19.2 200
4 粉土 5.7 140 19.0 180
5 粉質粘土 7.9 225 19.4 350
 
基礎承載力計算時,應采用荷載標準組合。
,取兩者中大者。
以軸線3為計算單元進行基礎設計,上部結構傳來柱底荷載標準值:
表9-1荷載標準組合
內力 恒載 活荷載 恒k+活k
A柱 M 12.33 4.03 16.36
N 682.75 159.99 842.74
V -7.63 -2.49 -10.17
B柱 M -10.95 -3.43 -14.38
N 915.79 242.92 1158.71
V 6.77 2.12 8.89
 
底層墻、基礎連系梁傳來荷載標準值(連系梁頂面標高同基礎頂面)
墻重: 0.00以上 :5.5×0.2×3.9=4.29kN/m(粉煤灰輕渣空心砌塊, =5.5 )
    0.00以下 :19×0.24×0.95=4.33kN/m(采用一般粘土磚, =19 )
連梁重:(400×240)
    
     (與縱向軸線距離0.15)
柱A基礎底面: FK = 842.74 +11.02 4.5 =892.33kN
            MK=37.01 +11.02 4.5×0.15+16.55×0.6 = 54.38kN·m
柱B基礎底面: FK =1158.71+11.02 4.5 = 1208.3kN
              MK=14.38+11.02 4.5×0.15+8.89 0.6=27.15kN·m
9.2 確定基礎底面積
A、D柱下采用鋼筋混凝土獨立基礎,B、C采用鋼筋混凝土聯(lián)合基礎,
根據地質條件、趯臃圪|粘土層作為持力層,設基礎在持力層中的嵌固深度為0.1m,室外埋深1.2,室內埋深1.65 m,(室內外高差0.45m)。
1.A柱:
(1)初估基底尺寸
由于基底尺寸未知,持力層土的承載力特征值先僅考慮深度修正,由于持力層為粉質粘土,故取 =1.6
=(16.5 1.0+16 0.5)/1.5=17.4
=100+1.6 17.4 (1.5-0.5) = 192.84
         = = 6.2
        設 =1.2     = =2.27
           取b=2.3m,l=2.8m
(2)按持力層強度驗算基底尺寸:
基底形心處豎向力: =892.33+20 2.3 2.8 (1.5+1.95) = 1114.5
基底形心處彎矩:  = 54.38
  偏心距: = = 0.049 < = 0.47
  <
  <
  滿足要求。
2.B柱:
因B、C軸向距僅3 ,D、E柱分別設為獨立基礎場地不夠,所以將兩柱做成雙柱聯(lián)合基礎。
因為兩柱荷載對稱,所以聯(lián)合基礎近似按中心受壓設計基礎,基礎埋深1.2 。

       設  l=5.6m,b=3m, A=16.8m2
按持力層強度驗算基底尺寸:
基底形心處豎向力: =1208.3+20 5.6 3 (1.5+1.65) = 1787.9
基底形心處彎矩:  = 27.15
偏心距: = = 0.015 < = 0.93
<
<
滿足要求。
9.3 基礎結構設計(混凝土采用C20)
1.荷載設計值
基礎結構設計時,需按荷載效應基本組合的設計值進行計算。
  A柱:F=1039.76+11.02×4.5×1.2=1099.27kN
        M=49.35+11.02×4.5×1.2×0.15+0.6×21.64=71.26kN.m
(B-C)柱:  
        
2.A柱:
(1)基底凈反力:

(2)沖切驗算
  
  
  
  
  
     
        
         =1.24m2
 
 
   基礎高度滿足要求。
(3)配筋
 
 


=
=216.26kN.m
   
     選Φ14@110

        
         =140.56 kN.m
    
配Φ14@160
注:短邊鋼筋放在長邊鋼筋內側,所以有效計算高度差10mm。
3.(B-C)柱基
   基礎高度  (等厚)
(1)基底凈反力:
(2)沖切驗算:計算簡圖見圖9-2。
要求
  
  
  ,
 
 
      滿足要求。
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

圖9-2   沖切驗算計算簡圖彎矩和剪力的計算結果
(3)縱向內力計算
  ,彎矩和剪力的計算結果見圖9-4。
(4)抗剪驗算
柱邊剪力:    

   滿足要求。
(5)縱向配筋計算
  板底層配筋:  
   折算成每米板寬3596.62/5.6=642
選 Φ14@200  As=770
板頂層配筋:按構造配筋φ10@200 As=393
(6)橫向配筋
柱下等效梁寬為:  
柱邊彎矩:
           
 
折算成每米梁寬2718/3=906
選Φ14@170,
 
 
 
 
 
 
 
 
 
 
 
 
 
第十章  科技資料翻譯
一、科技資料原文:
Castle Bridge, Weston-Super-Mare, UK
Castle Bridge is a minimal-cost solution to the dilemmaof a restricted crossing of a main railway line within a residential development area. The works employs reinforced earth embankments, integrated bridge deck andabutment construction and precast parapet solutions toovercome and minimise the safety, maintenance and costissues associated with the scheme.
1. INTRODUCTION
This paper describes a minimal-cost solution to a road bridgeover a railway, on a restricted site, to open up land for residential development. Locking Castle is an area under heavy residential development on the eastern side of Weston-Super Mare. Overseeing the development and client for the bridge isLocking Castle Limited, a company owned in consortium by two major house builders. The planning authority is North Somerset District Council (NSDC). The development area is splitin half by the Bristol to Exeter main railway line. Planning conditions for the area stipulated that the southern area couldnot be inhabited until a crossing of this railway line had beenbuilt. Fig. 1 shows the Locking Castle development and theimportance of the bridge to the area.
The development area is situated on the edge of the SomersetLevels, an area noted for its poor ground conditions, and is bounded by a railway line to Weston to the north and the A321dual carriageway to the south. Moor Lane, an existing countryroad, was the only access to the southern area and was notsuitable for the traffic expected by the increased housing stock.
Owing to the nature of the Somerset Levels, the new road overthe railway lines would have to be raised on embankments onboth sides of the track. An area of land had been reserved for the crossing but this area was small in comparison to a normalcrossing, which led to a number of compromises in the layoutof the structure. A blanket 20 mph speed limit, coupled with area-wide speed restriction measures, coverthewholeLockingCastledevelopment. This enabled the roads to be laid to a tightradius on the approaches to the bridge and also allowed theclient to agree, with NSDC, that steeper than normal gradientscould be used to attain the elevation of the crossing.
The client’s engineer, Arup, agreed general design principlesand the preliminary Approval in Principle (AIP) with NSDCprior to the issue of tender documents.
The contract was awarded to Dean & Dyball in July 2000 for atender value of £1·31 million and the contract period was set at34 weeks for a completion in April 2001. A simplifiedprogramme is shown in Fig. 2.
2. GROUNDWORKS
During the tender stage Pell Frischmann looked at a number ofrefinements to the tender design and following the award of thescheme undertook a full value engineering exercise in conjunction with the contractor, Dean & Dyball. The originaldesign called for steel H-piles under the bridge abutment areasadjacent to the railway line where limited vertical movement ofthe track was essential. Following a review of the groundconditions and based on previous experience, the team successfully argued that cast-in-situ displacement piles, usedelsewhere under the embankments, could be driven closer tothe tracks without any problem. The tracks were monitoredduring piling operations and level changes of less than 6 mmwere recorded along the affected section.
The ground conditions at the site consist of made groundoverlying up to 19 m of soft alluvial clay. Below this either a2 m layer of firm/stiff clay on mudstone or sandstone bedrockexists. Two types of driven cast-in-situ piles were designed byKeller, 340 and 380 mm in diameter, to cope with the differentloading conditions caused by the bridge and the embankment.These were driven to refusal from the existing ground level. Thepoor ground contributed to rapid pile installation and rates of up to eight piles a day were recorded. The total driven lengthranged between 22 and 24 m. Pile design information is shownin Table 1. Tests confirmed the integrity of the design andindicated a maximum settlement at working load of 6 mm.
A concrete pile cap was originally shown above the H-piles todistribute the loads from thebridge abutments to the piles.By replacing the H-piles withthe driven cast-in-situ piles,but at slightly reduced spa-cing, it was possible to eliminate the pile caps and extendsaving on construction time as well as cost.
3. LOAD TRANSFERMATTRESS AND EMBANKMENTS
The piles were used to support a load transfer mattress,which was constructed fromlayers of stone and geomembrane grids. Enlarged head piles had been shown on the tender drawing but, again drawing on previous experience, Pell Frischmann demonstrated that this design method could be utilised to reduce the depth of the
mattress and it was suggested that this approach be employed at Locking Castle. By casting an enlarged head of 1·1 m diameter at the top of each pile, the distance to the next pile was reduced and thus the span of the geomembranes in the mattress layers was decreased. Given that the arching effect in the mattress relies on an angle of 458 from the pile to the top of the mattress, the depth of stone could be reduced accordingly.
The overall depth of the mattress was reduced from 1500 mm to 900 mm by rationalising the design in this way. This also led to savings in reduced excavation to the original ground level (Fig.
3).Above the mattress the embankment rises to a maximum height of 6·3 m to carriageway level. To reduce the spread of the embankment, the tender design originally indicated faced precast concrete panels to vertical sidewalls. This was amended later in the tender stage to vertical walls of class A red brickwork, forcing a change in the design of the reinforced embankment. The design of the embankment was subcontracted to Tensar, based on a specification developed by Pell Frischmann. Their system comprised uniaxial geogrids laid at varying vertical spacing on compacted granular material. Class 6I/J granular material, in accordance with the Specification for Highway Works1was specified and this made up the bulk of the embankment. The grids were then anchored to dry-laid interlocking concrete blocks forming the near-vertical face of the embankment. A vertical drainage layer separated the 6I/J material from the concrete blocks. Ties were installed between the joints in the concrete blocks and the class A brickwork facing was constructed in front. Fig. 4shows the embankment crosssection.
The design of the embank-ment relies on the density of the compacted product being structure. This does not reduce the design life of the structure which was set at the standard 120 years. Difficul- ties with this method of construction are well known and include accounting for differential settlement, increased hogging moments at the ends of the beams and congestion of steel in the small areas between the beams. Sufficient structural strength is inbuilt to counteract the stresses of one abutment moving relative to the other. The design was also restricted by the need to keep the same depth of beam that had been identified on the tender drawings. Increas- ing the beams from a Y3 to a Y4 would have simplified the design but would have the penalty of higher embankments, larger pile and bridge loads, more imported material at a consistent value. To facilitate this, Dean & Dyball sourced 40 mm scalpings from Tarmac aggregates which not only consistently met the 6I/J grading but were also suitable for use in the load transfer mattress. In addition, a permanent materials testing presence was kept on site while the embankments were being constructed. The material was very easy to compact, requiring no more than a 1·5 t vibrating steel roller, and, due to its nature, was very suitable for laying in the generally wetconditions that prevailed at the time. All tests showed tha tminimum compaction of 94% was being achieved and the rate of rise of the embankment exceeded the contractors’expectations.
4. BRIDGE AND ABUTMENTS
The bridge deck consisted of prestressed Y3 precast concrete beams and an in situ reinforced concrete slab spanning 20 mover the railway lines. Figs 5 and 6 show the long- and crosssection of the bridge. The beams were supported on bankseats founded on the reinforced embankments. The narrow nature of the embankments was accentuated at the bankseat area sand it was soon obvious that these were too narrow to avoidresting the structure on the concrete block sidewalls of theembankments. To overcome this, the embankments werewidened locally in the vicinity of the abutments to enable thebankseat to sit wholly on the embankment (Fig. 7). As this change was too large to hide, a feature was made of the widened area by the use of strong right angles in the brickwork and pre-cast concrete (PCC) flagstones laid around the top of the brick wall adjacent to the abutments. The final layout gave added effect and accentuated the bridge and its approaches.
Once placed, the PCC beams were cast into each bankseat by the addition of an integral endwall. This eliminated the need for bearings and movement joints, thus creating an integral and steeper gradients on the approach roads. Pressure to keep the deck construction as shallow as possible came also from the discovery that the original tender drawings had not allowed for a deck crossfall to shed water. This raised the southernembankment 150 mm higher than anticipated.
The design was further complicated by the requirement to accommodate services under the bridge deck, between the beams, and through the integral end wall. These services were a 250 mm diameter water main (through a 350 mm diameter duct), an HV electric cable and a four-way BT duct. The loss of section was overcome by agreement to run the electric cable over the top of the deck, rather than below it, as it was not
physically possible to bring it through the identified location on the tender drawings. The loss of available wall section led to the requirement for smaller numbers of, but larger diameter,  bars fitted around the holes through the endwalls. This is turn made the detailing and fitting of these bars one of the trickiest elements of the job.
Although generally fixed by the layout of the overall scheme, the vertical road alignment was redesigned to accommodate the change in alignment of the bridge deck. This led to an increased gradient on the southern embankment but also had a knock-on effect on the loading of the bridge. To provide a reasonable rollover across the deck from the steep gradients on either side, the depth of surfacing increased to over 300 mm at its deepest point. This greater loading increased the amount of prestressing in the PCC beams.
At an early stage in the contract, Dean & Dyball had focused onthe placing of beams as a critical phase of the scheme,especially as the work was to be undertaken in January. Toaccelerate the placing of permanent formwork between the beams, the contractor requested that the edge beams bedesigned to include inserts to support the temporary handrails.
These were cast in at a depth such that they would be hidden in the final scheme by tails on the high containment precast P6parapet across the bridge. The temporary handrails were fitted to the edge beams prior to placement (Fig. 8). This enabled the contractor to start placing permanent formwork before all the PCC beams had been laid. This approach reduced the time of track possession, with the eleven beams and permanent formwork all installed within five hours.
5. APPROACH EMBANKMENT PARAPETS
Standard parapets of type P2 were designed to protect the edges of the approach embankments and the support for these presented the team with a considerable challenge. Originally shown as in situ reinforced concrete, it soon became clear that this solution would provide the contractor with a significant health and safety problem. Casting edge beams 6 m above the ground was potentially dangerous, required a lot of scaffolding mand permanent formwork, and would add weeks to the tight construction programme.
To overcome this, the contractor proposed using precast concrete parapet supports in lieu of in situ. However, due to the tight centreline radii on the bridge approaches (50 m radius), the length of each PCC section would need to be limited to avoid a ‘threepenny piece’ appearance. This created its ownproblems when design calculations showed that accidental loadings on the parapet would not be restrained by the use of small discrete PCC units.
A compromise solution consisting of a precast edge piece and an in situ section under the footway/cycleway construction was eventually developed to overcome the problems. To achieve the desired effect, the precast edge beam would need to be of sufficient size and shape to rest on the brick/block edging of the embankment without being unstable. In addition, the sides of each unit would need to be slightly tapered to accommodate the radii of the bends, and the parapet support post bolt cradle would need to be pre-installed at the correct spacing. Team work between the designer and contractor led to a reduction in the number of panel types from 30 to 17, ranging in length from a maximum of 3·65 m to a minimum of 1·98 m, while keeping the parapet posts at a constant spacing along the main length of the embankments (Fig. 9).
The precast units were tied together by means of an in situ element. This comprised a slab extending the entire length of the embankments from the bankseats to the end of the parapet units. The slab was cast continuously, without joints, so that it acted as a beam. The slab was designed with a toe, which, together with friction, counteracts the lateral forces from accidental loading of the parapet posts while the overturning forces of any impact are countered by the weight and cantilever effect of the continuous slab. The P2 support sections were placed and levelled to give apleasing sweep and elevation to the bridge while a tail on the PCC unit was included to hide the top of the brickwork wall, ensuring a neat appearance was achieved.
6. TEAM WORKIN
One of the most pleasing aspects of the scheme was the goodworking relationship that was maintained between all parties. Although working under the General Conditions of Contract for Building and Civil Engineering GC/works/1,2the contractor was keen to espouse the ethics of partnering. Regular meetingsbetween the contractor, designer, client’s engineer and client’s architect took place to keep all parties informed of the latest developments and to deal with concerns before they became a distraction. Communications, channelled through the contractor, between interested third parties, such as Railtrack and NSDC, were also well managed, which ensured that possessions were granted as requested and adoption requirements were dealt with swiftly. This approach was key to meeting the tight construction deadline and in dealing with the minor omissions found in the tender design in a professional manner. It is a credit to the contractor that this was maintained throughout the period of the contract.
7. SUMMARY
Locking Castle Bridge is based on a modern and innovative design which, along with its appearance (Fig. 10), benefits the local environment and provides a focal point for the new residential development. The creation of a park adjacent to the southern embankment will enhance the status and appearance of the bridge in years to come and provide a sense of pride forall those involved in the construction of Locking Castle Bridge.
REFERENCES
1.     Specification for Highway Works. In: Manual of ContractDocument for Highway Works. Highways Agency. TheStationery Office, 1993.
2.    GC/Works/1: Conditions of Contract for Major Building and Civil Engineering Works. Single Stage Design & Build, The Stationery Office, 1998
 
原文翻譯:
英國鎖城大橋
鎖城大橋是橫跨住宅發(fā)展區(qū)的鐵路橋梁。由于工程施工受到周圍建筑與地形的限制,該工程采取加固橋臺、橋墩與橋面的剛構結構,以及預制欄桿等方法提高了大橋的使用安全程度,并降低了大橋建造與維護的費用。因此,城堡大橋科學的設計方案使工程成本降到最低。
一、       引言
本文描述的是在受限制地區(qū)用最小的費用修建一座鐵路橋梁使之成為開放的住宅發(fā)展區(qū)。鎖城地區(qū)是位于住宅發(fā)展十分緊張的韋斯頓超
圖1  鎖城大橋位置遠景
馬雷的東部。監(jiān)督橋梁建設的客戶是城堡建設有限公司,它由二大房建者組成。該區(qū)的規(guī)劃局是北盛捷區(qū)議會(NSDC)。該發(fā)展地區(qū)被分為布里斯托爾和?巳亍R(guī)劃條件規(guī)定,直到建成這條橫跨的鐵路大橋為止,該地區(qū)南部區(qū)域不可能適應居住。可見鎖城大橋的建成對該地區(qū)發(fā)展的重要性。
發(fā)展地區(qū)位于薩默塞特的邊緣,這個地區(qū)地形十分的惡劣,該范圍位于韋斯頓以北和A321飛機雙程雙線分隔線的南面。現在只有一條鄉(xiāng)下公路,是南部區(qū)域的唯一通道。該地區(qū)是交通預期不適合住宅增加的區(qū)域。
由于盛捷地區(qū)水平高程的限制,新的鐵路線在橋臺兩邊必須設有高程差。 并且該地區(qū)地形限制,允許正常橫跨的區(qū)域較小,這導致在結構的布局上的一定數量的妥協(xié)。為了整個城堡地區(qū)的發(fā)展, 全

圖2  鎖城大橋地圖上位置
橋限速20公里/時,并考慮區(qū)域范圍內的速度制約。這樣在得到客戶和NSDC的同意后,橋梁采取了最小半徑的方法,這使得橋梁采用了比正常梯度更加陡峭地方法實現高程的跨越。
客戶的工程師、工程顧問、一般設計原則和初步認同原則下(AIP)與NSDC發(fā)出投標文件。
該合同在2000年7月1授予安迪。投標價值1.31億美元,合同期定為34周,到2001年4月完成。
 
 
 
 
 
 
 
 
 
 
 
 
    圖3  橋整體橫斷面
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   圖4  橋體長度          圖5  橋上部結構橫斷面
二、地基
在招標階段佩爾研究了一些優(yōu)化設計和招標后的裁決計劃進行了充分的經濟分析后交付承包商,院長及安迪 。原來設計要求H型

 
 
 
 
 
 
 
圖6  橋面鋪裝
 
鋼樁柱下的橋臺地區(qū)與相鄰鐵路線之間必須是垂直運動。經審查后的地面條件和根據以往的經驗判斷,現澆位移樁,使用其他類似地方的河堤下,可驅動更接近軌道而不會有任何問題。并在受影響區(qū)域進行了監(jiān)測,打樁作業(yè)和水平高程的變化小于要求的6毫米。
在地面下覆蓋厚達19米的軟沖積土。這下面是2米層堅定/硬粘土泥巖或砂巖基石。兩種類型的驅動現澆樁設計了340和380毫
米的大口徑水管,以應付不同載入條件所造成的橋梁和堤壩的不同荷載。 這些有利于樁體的載入。最多可達一天8個樁的記錄。總長度
驅動介于22和24米之間。試驗證實了完整的設計和表示最多解決在工作負荷為六毫米
一個具體的樁帽負載從橋墩傳遞到樁。 取代H型樁柱與 驅動現澆樁, 但略有減少水,它能使樁帽的荷載延長傳遞到承臺,從而節(jié)約施工時間 以及成本。
三、荷載傳遞,路基
樁被用來抑制端口的負載轉移,這是因為修建時采用了石頭和網膜。 在招標圖紙上顯示了基礎頂部擴大樁,再運用早先經驗, 佩爾指出這個設計方法可能被運用減少墊層的深度,并且把這種方法使用在城堡大橋上。 通過熔鑄一個擴大的部分1.1m在每樁上面,距離到樁下減少了1 m直徑,并且薄膜的間距在墊層的增加因而被減少了。 假設成拱形的作用在承臺依靠角度458從堆到墊層的上面,可能相應地減少石頭的深度。通過合理的設計,墊層的整體深度從1500毫米減少了到900毫米。 這樣減少了挖掘深度并保留了原始的底層。.
墊層路堤上升到最大高度6.3 m的車道高程。為了減少蔓延的路堤,招標設計最初面臨混凝土預制板垂直側壁。這是后來修正的在投標階段用紅磚砌筑的垂直墻壁,迫使改變設計中的鋼筋路堤。路基被分包兩個部分以坦薩為基礎和規(guī)范發(fā)展的佩爾弗里斯赫曼恩路段。其系統(tǒng)組成的單軸土工格柵在不同規(guī)定垂直間隔的壓實顆粒物質。顆粒狀材料,符合高速公路規(guī)范做路堤材料的相關規(guī)定。該網格,掛靠在干燥的混凝土砌塊上形成近垂直的路堤。被垂直排水層分開。在兩者之間安裝了隔水帶,并且在前面修建了磚砌飾面。 圖-4展示基礎的橫斷面
圖7  防撞墻
路堤的設計是依靠緊密的產品的密度結構。這并不會減少橋梁結構的120年的設計使用壽命。此方法的約束結構是眾所周知的, 并且在結算梁末端的負彎矩時作為一個統(tǒng)一體來解決。并且利用墩臺的內力來約束其相對移動。在招標圖紙上還限制了必須要保持同樣的深度,F在 從Y3到Y4進行簡化設計,這樣就會有更高的橋基、更大的樁和橋梁荷載,造成進口的材料損失。院長及安迪在這一共同目標下進行了這項工作。凈厚40毫米的瀝青混凝土不僅滿足材料等級的要求,也適合使用在負荷傳遞的墊層上。此外,一直在現場進行永久材料的測試,而在興建河堤時,該材料很容易壓實,按要求使用1.5噸的振動壓路機碾壓,而且,就其性質而言,非常適合埋設在潮濕的條件。所有的測試結果顯示, 最低的壓實度在94 %以上,壓實度遠遠超過承包商期望。
四、橋梁和橋墩
橋面包括預制預應力混凝土梁和一塊跨度20m的現澆鋼筋混凝土平板。圖4和5顯示橋梁的長度和橫斷面。 在加強的橋臺建立支撐梁。在支撐梁區(qū)域凸顯了橋臺狹窄的特點,并且這些太狹窄的橋臺

 
 
 
 
 
 
 
圖8  擋土墻
不能避免的退出工作結構,并對混凝土砌塊側壁的河堤產生壓力。為了克服這個困難,把河堤的擋土墻在橋臺附近擴大,并使之成為完全擋土墻 (圖8)。 因為這變動太大以至于不能掩藏,在磚墻的上面放置的磚砌和預制混凝土做了加寬的區(qū)域,并在橋臺附近形成了壩肩。最后的布局給橋梁帶來了增值效應并豐富了橋梁和其施工方法。
一旦澆注了混凝土,整個橋面將形成一個整體。 這方法消除了梁與支撐之間的轉動,因此,使橋面形成了一個統(tǒng)一的更加陡峭坡度。為了保持橋面產生壓力保持一樣,使橋面出現橫向的排水,這是招標圖紙不允許的。 這就提出了一個南部路基高于預期150毫米。
設計要求在梁和橋面板之間容納一些復雜的服務設備。這些設備是一條250毫米直徑總水管(通過一條350毫米直徑輸送管), HV電纜和一條四種方式的BT輸送管。在招標圖紙上看這些服務設備是在橋梁之間缺失的部分通過,而不是在它的下面通過。這些可利用的部分損失能夠使橋梁的自重更小、結構減輕,而且橋梁的截面尺寸更大,這些臨時的設施在孔中通過。因此,要求作出詳細的安裝說明,這又是一個非常棘手的工作。
橋梁的布局方案是一個整體的固定結構。并且,重新設計成了垂直路線,以適應橋面的變化。這就導致了南部橋臺的升高,從而,橋面的坡度增加。因此,對上面的橋梁產生了連鎖反應。為提供合理的橋面跨越坡度,在橋南部的樁相應的增長,在增長最多的地方增加深度超過300毫米。這要求在預應力混凝土中增加更大預應力。
在早期階段的合同中,院長及安迪把梁的施工作為一個關鍵階段, 尤其施工是在1月份進行。承包商要求在梁之間快速安裝永久模板,并且,要求在邊梁設計時插入臨時扶手欄桿。
澆注了橫跨橋梁護墻后,能夠掩蓋P6欄桿末端。在安裝邊緣梁之前應先安裝臨時扶手欄桿。在安裝所有的混凝土梁之前,承包商先安置永久模板。這種安裝方法安裝11根梁和所有的永久建筑僅僅需要5小時,大大的節(jié)省了施工周期。
五、護墻
標準型的P2護墻的目的是保護的邊緣河堤。因此,對該小組提出了相當大的挑戰(zhàn)。必須在原先的位置澆注鋼筋混凝土,承包商對這種解決方案提出了健康與安全問題,因為在地面上澆注6m的邊緣梁是十分危險的,必須要用到更多的腳手架和永久模板,并且,施工將延長幾個星期,工期將更加緊張。
    為此,承包商建議使用預制混凝土欄桿來替代在原處澆注混凝土。然而,由于橋梁采用的是最小半徑,所以每個混凝土梁的長度受到限制,以避免出現外觀問題。并且計算表明混凝土欄桿會受到使用限制。
另外一種折衷的解決辦法包括一個預制件和邊緣現澆的行人/自行車道建設,最終克服了這些問題。為了實現理想的效果,邊梁的預制需要的足夠的大小和形狀的磚塊,以確保邊緣的路堤穩(wěn)定。此外,雙方每個單位將需要略錐形,以適應半徑的彎道,并且護墻后螺栓支持搖籃要預先安裝在正確的間距上。由于設計師和承包商通力合作,盤區(qū)類型的數量從30減少到17,排列在長度從最多3.65 m減少到最小限度1.98 m,并保留欄桿位置恒定間距沿堤防的主要長度(如圖9)。
預制的構件通過現場澆注在一起,形成了一個整體。同時連欄桿和擴大的路堤也澆注在一起。把橋面板澆注在一起,使之形成梁。并且橋面板做了腳趾形設計,利用其摩擦力來抵抗欄桿的偶然荷載,用連續(xù)的橋面板和懸臂式結構抵抗外部的對 橋面的扭轉和傾覆力。
P2支持部分被做成水平并且與橋梁完美的組合在一起。而末端被混凝土掩蓋保證了外觀的整潔。
六、運作
在整個計劃中最值得欣慰的是能夠很好的維護各個方面的關系。大家在工程合同約定下一起工作,在出現矛盾之前,舉行定期會議時告知承包商、設計師、客戶的工程師和客戶的建筑師工程之間相互通告事情的最新事態(tài)發(fā)展和處理的意見。并且在感興趣
圖9  鎖城大橋
 
的方面打開信息交換的通道適時的通信,例如處理好鐵路軌道等,并按要求保證資金適時到位。在遇到工程最后期限緊張時或發(fā)現設計圖紙有小遺漏時要以專業(yè)的方式進行溝通。這事成為承包商在整個合同期間維護信用的關鍵。
七、摘要
鎖城大橋是集現代和創(chuàng)新于一體的設計(圖9)。加上其美麗的外觀,不僅美化了當地環(huán)境。還增加了外界聯(lián)系。更有利于新住宅的發(fā)展。并且在橋的南部還建立了一個公園,這將提高大橋的地位和整體的外觀。在今后幾年里,鎖城大橋將是所有參與建造者的自豪。
參考文獻
公路工程規(guī)范             速公路局辦公室       1993年
建筑與土木工程規(guī)范        建造與設計辦公室    1998年
 
 
 
 
 
 
 
 
 
 
 
 
參考資料
《建筑結構抗震設計》,東南編著、清華主審。,1998
《混凝土結構》上冊,2,天津、同濟、東南主編,清華主審.,1998
《房屋建筑學》,3,同濟、西安建筑科技、東南、重慶建筑編,,1997
《建筑工程制圖》,3,同濟建筑制圖教研室,陳文斌、章金良主編,同濟,1996
《結構力學》上冊,4,湖南結構力學教研室編,高等教育,1998
《土木工程專業(yè)英語》,段兵廷主編,武漢:武漢工業(yè),2001
《高等學校建筑工程專業(yè)畢業(yè)設計指導》,沈蒲生、蘇三慶主編,北京:,2000、6
《土木工程專業(yè)畢業(yè)設計指導》,梁興文、史慶軒主編,科學,2002
《建筑結構荷載規(guī)范》,02—1—10發(fā)布,02—3—1實施中華人民共和國建設部主編,,2001
《混凝土結構設計規(guī)范》,02—2—20發(fā)布,02—4—1實施,中華人民共和國建設部主編,2002
《工民建專業(yè)畢業(yè)設計指南》,周果行,北京:,2000
《建筑地基基礎設計規(guī)范》         GBJ7-89
、同濟、東南主編,清華主審.,1998
《房屋建筑學》,3,同濟、西安建筑科技、東南、重慶建筑編,,1997
《建筑工程制圖》,3,同濟建筑制圖教研室,陳文斌、章金良主編,同濟,1996
《結構力學》上冊,4,湖南結構力學教研室編,高等教育,1998
《土木工程專業(yè)英語》,段兵廷主編,武漢:武漢工業(yè),2001
《高等學校建筑工程專業(yè)畢業(yè)設計指導》,沈蒲生、蘇三慶主編,北京:,2000、6
《土木工程專業(yè)畢業(yè)設計指導》,梁興文、史慶軒主編,科學,2002
《建筑結構荷載規(guī)范》,02—1—10發(fā)布,02—3—1實施中華人民共和國建設部主編,,2001
《混凝土結構設計規(guī)范》,02—2—20發(fā)布,02—4—1實施,中華人民共和國建設部主編,2002
《工民建專業(yè)畢業(yè)設計指南》,周果行,北京:,2000
《建筑地基基礎設計規(guī)范》         GBJ7-89


  3264平米的三層框架教學樓畢業(yè)設計(帶計算和圖紙) 下載地址
進入下載地址列表

猜你還喜歡

建筑工程: 施工組織設計 圖紙 論文 方案 安全資料 工藝 建筑軟件 節(jié)能 專業(yè)資料 合同 交底 文本 建筑考試 教程
園林景觀: 園林施工方案 園林論文 園林考試 園林表格 景觀專業(yè)資料 園林圖紙 景觀設計
暖通空調: 暖通專業(yè)資料 暖通軟件 技術交底 暖通論文 暖通考試 暖通圖紙 暖通施工方案 暖通軟件
水利工程: 水利施工方案 水利考試 水利專業(yè)資料 水利軟件 水利論文
結構工程: 結構施組方案 結構圖紙 結構軟件 結構課件 工藝工法 結構考試 結構專業(yè)資料 結構論文 其他資料
電氣工程: 電氣施工方案 電氣圖紙 電氣軟件 電氣論文 電氣課件 智能建筑 電氣專業(yè)資料 電氣考試
建筑給排: 給排施組方案 技術交底 給排水專業(yè)資料 污水處理 消防工程 給排水圖紙 給排水論文 給排水軟件
安裝工程: 設備安裝圖紙 安裝工程專業(yè)資料 安裝施組設計 專題
工程造價: 造價法規(guī) 造價視頻 造價指標 建筑造價 造價考試 水利造價 電力造價 裝修造價 其他 安裝造價 路橋造價 市政造價 園林造價 造價軟件 造價表格 清單實
工程監(jiān)理: 監(jiān)理交底 施工監(jiān)理 監(jiān)理文檔 旁站監(jiān)理 監(jiān)理考試 合同表格 監(jiān)理細則 監(jiān)理大綱 監(jiān)理總結 監(jiān)理月報 監(jiān)理規(guī)劃
路橋工程: 合同表格 路橋工藝 路橋論文 路橋交底 安全資料 路橋標書 路橋專業(yè)資料 路橋軟件 其他資料 路橋圖紙 路橋施工方案 路橋考試
裝飾裝修: 裝修施工方案 裝修圖紙 室內設計 施工工藝 裝修技術交底 裝修表格 裝修資料 建筑文庫